
ADOBE SYSTEMS INCORPORATED
Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000
http://www.adobe.com

XMP Specification

June 2005�

Copyright © 2000–2005 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Framemaker, InDesign, Photoshop, PostScript, the PostScript logo,
and XMP are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries. MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Apple, Macintosh, and QuickTime are trademarks of Apple
Computer, Inc., registered in the United States and other countries. UNIX is a trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective
owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or
statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability,
fitness for particular purposes, and noninfringement of third party rights.

XMP Specification 3

Table of Contents

Preface . 7

About This Document . 7
Audience . 7
How This Document Is Organized. . 7
Conventions used in this Document. . 7

Where to Go for More Information . 8

Changes in This Document . 8

Chapter 1 Introduction . 11

What is Metadata? . 11

What is XMP? . 11

What XMP Does Not Cover . 12

Chapter 2 XMP Data Model . 13

Metadata Properties . 13

Schemas and Namespaces . 14

Property Values . 15
Simple Types . 15
Structures . 16
Arrays . 16
Property Qualifiers. 17

Chapter 3 XMP Storage Model . 21

Serializing XMP . 21
x:xmpmeta element . 22
rdf:RDF element . 22
rdf:Description elements. 22
XMP Properties . 24
RDF Issues . 29

XMP Packets. 30
Header. 31
XMP Data . 32
Padding . 32

4 XMP Specification

Table of Contents

Trailer . 32
Scanning Files for XMP Packets . 33

External Storage of Metadata . 35

Chapter 4 XMP Schemas . 37

XMP Schema Definitions. 38

Dublin Core Schema . 39

XMP Basic Schema . 40

XMP Rights Management Schema . 42

XMP Media Management Schema. 43

XMP Basic Job Ticket Schema . 46

XMP Paged-Text Schema . 47

XMP Dynamic Media Schema . 48

Adobe PDF Schema . 53

Photoshop Schema . 54

Camera Raw Schema . 55

EXIF Schemas . 58
EXIF Schema for TIFF Properties . 58
EXIF Schema for EXIF-specific Properties . 60
EXIF Schema for Additional EXIF Properties . 69
Data Representation and Conversion . 69

Property Value Types . 73
Basic Value Types. 73
Media Management Value Types . 78
Basic Job/Workflow Value Types . 80
Video Media Value Types . 80
EXIF Schema Value Types . 83

Extensibility of Schemas . 87
Creating Custom Schemas . 87
Extending Schemas . 88

Chapter 5 Embedding XMP Metadata in Application Files 91

TIFF . 92

JPEG . 93

JPEG 2000 . 94

GIF . 95

XMP Specification 5

Table of Contents

PNG . 97

HTML. 98

PDF .100

AI (Adobe Illustrator) . .100

SVG/XML .101

PSD (Adobe Photoshop) . .102

PostScript and EPS .103
Document-Level Metadata .103
Object-Level Metadata .111

DNG .112

6 XMP Specification

Table of Contents

XMP Specification June 2005 7

Preface

About This Document

XMP (Extensible Metadata Platform) provides a standard format for the creation, processing,
and interchange of metadata, for a wide variety of applications.

This section contains information about this document, including how it is organized,
conventions used in the document, and where to go for additional information.

Audience

This document is intended for developers of applications that will generate, process, or
manage files containing XMP metadata.

How This Document Is Organized

This document has the following sections:

● Chapter 1, “Introduction”, explains what metadata is, and gives a brief overview of the
XMP model.

● Chapter 2, “XMP Data Model”, gives a conceptual overview of the data that XMP
supports. It describes how metadata is organized into schemas containing a number of
properties.

● Chapter 3, “XMP Storage Model”, shows the overall structure of XMP data in files.

● Chapter 4, “XMP Schemas”, lists common schemas that are used for XMP metadata, as
well as the value types used for properties. It also describes how new schemas can be
defined to meet needs beyond what is supported by the existing model.

● Chapter 5, “Embedding XMP Metadata in Application Files”, describes how XMP
metadata is embedded in a variety of specific application files.

Conventions used in this Document

The following type styles are used for specific types of text:

Typeface Style Used for:

Sans serif regular XMP property names. For example, xmp:CreationDate

Monospaced Regular All XML code

8 June 2005 XMP Specification

Preface
Where to Go for More Information

Where to Go for More Information

See these sites for information on the Internet standards and recommendations on which XMP
Metadata is based:

Changes in This Document

The following changes have been made since earlier editions of this document:

● April 2004:
– Added the EXIF namespace for the fields of the Flash, OECF/SFR, CFAPattern, and

DeviceSettings data types (under “EXIF Schema Value Types” on page 83)

● April 2005:
– Added note that all XMP names must be in an XML namespace (see “Metadata

Properties” on page 13)
– Corrected namespace URI for Dimensions data type, changed “http;” to “http://” (see

“Dimensions” on page 74)
– Corrected value type for photoshop:SupplementalCategories, changed

“Text” to “bag Text” (under “Photoshop Schema” on page 54)
– Corrected “uncalibrated” value for exif:ColorSpace, changed -32768 to 65535

(under “EXIF Schema for EXIF-specific Properties” on page 60)
– Clarified the description of the 2 GPSCoordinate value forms (under

“GPSCoordinate” on page 84)

Dublin Core Metadata Initiative http://purl.org/DC/

Extensible Markup Language (XML) http://www.w3.org/XML/

IETF Standard for Language element values (RFC 3066) http://www.ietf.org/rfc/rfc3066.txt?number=3066

ISO 639 Standard for Language Codes http://www.loc.gov/standards/iso639-2/

ISO 3166 Standard for Country Codes http://www.iso.ch/iso/en/prods-
services/iso3166ma/index.html

Naming and Addressing: URIs, URLs, and so on http://www.w3.org/Addressing/

Resource Description Framework (RDF): http://www.w3.org/RDF/

Resource Description Framework (RDF) Model and Syntax
Specification

http://www.w3.org/TR/REC-rdf-syntax/

Unicode http://www.unicode.org

XML Namespaces http://www.w3.org/TR/REC-xml-names/

http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

http://purl.org/DC/
http://www.w3.org/XML/

http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.loc.gov/standards/iso639-2/

http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/RDF/

http://www.w3.org/TR/REC-rdf-syntax/
http://www.unicode.org
http://www.w3.org/TR/REC-xml-names/

XMP Specification June 2005 9

Preface
Changes in This Document

– Removed the suggested usage of an “instance ID” for the rdf:about attribute (see
“The rdf:about attribute” on page 23)

– Noted that the XMP must be encoded as UTF-8 when embedded in TIFF, JPEG,
JPEG 2000, PNG, PDF, PSD, and PostScript/EPS files (see Chapter 5, “Embedding
XMP Metadata in Application Files”)

● June 2005:
– Added qualification to XMP property and structure names in examples.
– Noted that URIs must end in “/” or “#” to be RDF compliant.
– References to RFC 1766 were changed to RFC 3066.
– Clarified Unicode encoding support.
– Clarified description of The rdf:about attribute.
– Noted that top-level RDF typed nodes are not supported.
– Added information for:

XMP Dynamic Media Schema
Camera Raw Schema
EXIF Schema for Additional EXIF Properties

– Corrected descriptions of tiff:DateTime (spelling of EXIF attribute
SubSecTime) and tiff:Artist (corresponds to first item in dc:creator array).
See EXIF Schema for TIFF Properties.

– Added Property Value Types:
Colorant
Font
Video Media Value Types

– Corrected Property Value Types descriptions:
Date
Locale
Job

– Added reference to DNG in Chapter 5, “Embedding XMP Metadata in Application
Files”.

– Noted that in PostScript, the XMP marker must be at the beginning of a line. See
Ordering of Content.

10 June 2005 XMP Specification

Preface
Changes in This Document

XMP Specification June 2005 11

1 Introduction

What is Metadata?

Metadata is data that describes the characteristics or properties of a document. It can be
distinguished from the main contents of a document. For example, for a word processing
document, the contents include the actual text data and formatting information, while the
metadata might include such properties as author, modification date, or copyright status.

There can be gray areas where the same information could be treated as content or metadata,
depending on the workflow. In general, metadata should have value on its own without regard
for the content. For example, a list of all fonts used in a document could be useful metadata,
while information about the specific font used for a specific paragraph on a page would be
logically treated as content.

Metadata allows users and applications to work more effectively with documents.
Applications can do many useful things with metadata in files, even if they are not able to
understand the native file format of the document. Metadata can greatly increase the utility of
managed assets in collaborative production workflows. For example, an image file might
contain metadata such as its working title, description, thumbnail image, and intellectual
property rights data. Accessing the metadata makes it easier to perform such tasks as
associating images with file names, locating image captions, or determining copyright
clearance to use an image.

File systems have typically provided metadata such as file modification dates and sizes. Other
metadata can be provided by other applications, or by users. Metadata might or might not be
stored as part of the file it is associated with.

What is XMP?

In order for multiple applications to be able to work effectively with metadata, there must be a
common standard that they understand. XMP—the Extensible Metadata Platform—is
designed to provide such a standard.

XMP standardizes the definition, creation, and processing of metadata by providing the
following:

● A data model: A useful and flexible way of describing metadata in documents: see
Chapter 2, “XMP Data Model”.

● A storage model: The implementation of the data model: see Chapter 3, “XMP Storage
Model”. This includes the serialization of the metadata as a stream of XML; and XMP

12 June 2005 XMP Specification

Introduction
What XMP Does Not Cover

1

Packets, a means of packaging the data in files. Chapter 5, “Embedding XMP Metadata in
Application Files”, describes how XMP Packets are embedded in various file formats.

● Schemas: Predefined sets of metadata property definitions that are relevant for a wide range
of applications, including all of Adobe’s editing and publishing products, as well as for
applications from a wide variety of vendors. See Chapter 4, “XMP Schemas”. XMP also
provides guidelines for the extension and addition of schemas.

The following XMP features are described in separate documents:

● The Adobe XMP Toolkit describes Adobe’s open source toolkit API for developers.

● XMP Custom Panels describes how to create a Custom Panel Description file, which gives
developers the ability to define, create, and manage custom metadata properties by
customizing the standard File Info dialog in Adobe applications that support XMP.

XMP is designed to accommodate a wide variety of workflows and tool environments. It
allows localization and supports Unicode.

XMP metadata is encoded as XML-formatted text, using the W3C standard Resource
Description Framework (RDF), described in Chapter 3, “XMP Storage Model”.

NOTE: The string “XAP” or “xap” appears in some namespaces, keywords, and related names
in this document and in stored XMP data. It reflects an early internal code name for
XMP; the names have been preserved for compatibility purposes.

What XMP Does Not Cover

Applications can support XMP by providing the ability to preserve and generate XMP
metadata, giving users access to the metadata, and supporting extension capabilities.

A number of related areas are outside the scope of XMP itself, and should be under the control
of the applications and tools that support XMP metadata, although this document may make
some recommendations. These areas include the following:

● The specific metadata set by each application.

● The operation of media management systems.

● The user interface to metadata.

● The definition of schemas beyond those defined by XMP.

● Validity and consistency checking on metadata properties.

● The requirement that users set or edit metadata.

Following the XMP schemas and guidelines presented in this document cannot guarantee the
integrity of metadata or metadata flow. That integrity must be accomplished and maintained
by a specific set of applications and tools.

http://www.w3.org/RDF/

XMP Specification June 2005 13

2 XMP Data Model

This chapter describes the kinds of data that XMP supports.

● Metadata Properties” describes how metadata items are associated with a document in the
form of properties.

● “Schemas and Namespaces” on page 14 discusses how properties are named and organized
into groups called schemas.

● “Property Values” on page 15 describes the data types that can be used for XMP properties.

Metadata Properties

In XMP, metadata consists of a set of properties. Properties are always associated with a
particular entity referred to as a resource; that is, the properties are “about” the resource. A
resource may be:

● A file. This includes simple files such as JPEG images, or more complex files such as
entire PDF documents.

● A meaningful portion of a file, as determined by the file structure and the applications that
process it. For example, an image imported into a PDF file is a meaningful entity that could
have associated metadata. However, a range of pages is not meaningful, because there is no
specific PDF structure that corresponds to it. In general, XMP is not designed to be used
with very fine-grained subcomponents, such as words or characters.

Any given property has a name and a value. Conceptually, each property makes a statement
about a resource of the form

“The property_name of resource is property_value.”

For example:

The author of Moby Dick is Herman Melville.

This statement is represented by metadata in which the resource name is “Moby Dick,” the
property name is “author,” and the property value is “Herman Melville,” as in the following
figure.

Moby Dick

Author Date Written

"1851""Herman Melville"

14 June 2005 XMP Specification

XMP Data Model
Schemas and Namespaces

2

In the diagrams that illustrate the data model in this chapter, the top or root of the metadata tree
is the resource—that is, the document or component to which the metadata applies.

NOTE: All property and structure field names in XMP must be legal XML qualified names.
That is, they must be well formed XML names and in an XML namespace.

Schemas and Namespaces

A schema is a set of properties. Typically, schemas may consist of properties that are relevant
only for particular types of documents or for certain stages of a workflow. Chapter 4, “XMP
Schemas”, defines a set of standard metadata schemas and explains how to define new
schemas.

Each schema is identified by means of a namespace (which follows the usage of XML
namespaces). The use of namespaces avoids conflict between properties in different schemas
that have the same name but different meanings. For example, two independently designed
schemas might have a Creator property: in one, it might mean the person who created a
resource; in another, the application used to create the resource. Name conflicts are avoided by
qualifying property names with a schema-specific namespace prefix (see below).

Each schema consists of

● A schema name, which is a URI that serves to uniquely identify the schema. It is simply a
unique string. (Although it often looks like a URL, there might or might not be an actual
Web page at the URI. In the case of Adobe namespaces, currently there is no corresponding
Web page.) The URI must obey XML namespace rules, and must end with “/” or “#”.

The schema URI is a unique string, whose components have no significance. For example,
foo:/schema/1.0/ and foo:/schema/2.0/ are completely different schemas with no
necessary relationship between them.

IMPORTANT: To be RDF-compliant, the URI must be properly terminated with "/" or
"#".

● A schema namespace prefix, which is a short abbreviation for the full schema name. The
schema namespace prefixes used here are not formal. Following the rules of XML
namespaces, the schema namespace prefix is simply shorthand for the schema URI and is
local to the scope of the xmlns attribute that declares it.

For example, in the following code, the namespace prefix for the XMP Basic Schema is
defined to be xmp:

xmlns:xmp="http://ns.adobe.com/xap/1.0/"

Following XML qualified name conventions, properties in a schema are written as

prefix:name

XMP Specification June 2005 15

XMP Data Model
Property Values

2

where prefix is a schema namespace prefix and name is a valid simple XML name; for
example, xmp:CreateDate.

Property Values

The data types that can represent the values of XMP properties are in three basic categories,
described here: simple types, structures, and arrays. Since XMP metadata is stored as XML,
values of all types are written as Unicode strings.

This section shows conceptual examples of XMP data types. “Serializing XMP” on page 21
shows how these examples are represented in XML. Definitions of all predefined properties
and value types can be found in Chapter 4, “XMP Schemas”.

Simple Types

A simple type has a single literal value. Simple types include familiar ones such as strings,
booleans, integers and real numbers, as well as others such as Choice.

In this figure, the document XMP_Specification.pdf is shown with 2 simple properties:

● The value of the property dc:format is the MIMEType value "application/pdf".

● The value of the property xmp:CreateDate is the Date value "2002-08-15T17:10:04Z".

XMP_Specification.pdf

dc:format xmp:CreateDate

"application/pdf" "2002-08-15T17:10:04Z"

16 June 2005 XMP Specification

XMP Data Model
Property Values

2

Structures

A structured property consists of one or more named fields.

This example shows a single structured property whose type is Dimensions. The structure has
its own XML namespace prefix (stDim), although this is not required of structure fields in
general. There are three fields: stDim:w (width), stDim:h (height) and stDim:unit (units), whose
values are "8.5", "11.0" and "inch".

A field in a structure can itself be a structure or an array.

Arrays

An array consists of a set of values. You can think of an array as a structure whose field names
are ordinal numbers, as shown in this figure.

The individual elements of an array are strongly recommended to be of the same type. (In the
example, the elements are of type Text.) In addition to simple types, array elements may be
structures or arrays.

XMP_Specification.pdf

xmpTPg:MaxPageSize

stDim:w

stDim:h

stDim:unit

"8.5"

"11.0"

"inch"

XMP_Specification.pdf

dc:subject

1

"metadata"
"schema" "XMP"

bag

2
3

XMP Specification June 2005 17

XMP Data Model
Property Values

2

XMP supports three types of arrays: unordered, ordered, and alternative, described in the
following sections.

Unordered Arrays

An unordered array is a list of values whose order does not have significance. For example,
the order of keywords associated with a document does not generally matter, so the dc:subject
property is defined as an unordered array.

In the schema definitions, an unordered array is referred to as a bag. For example, dc:subject is
defined as “bag Text”.

Ordered Arrays

An ordered array is a list whose order is significant. For example, the order of authors of a
document might matter (such as in academic journals), so the dc:creator property is defined as
an ordered array.

In the schema definitions, an ordered array is referred to as a seq. For example, dc:creator is
defined as “seq ProperName”.

Alternative Arrays

An alternative array is a set of one or more values, one of which should be chosen. In the
schema definitions, an alternative array is referred to as an alt. For example, xmp:Thumbnails
is defined as “alt Thumbnail”. There are no specific rules for selection of alternatives: in some
situations, an application may make a choice; in others, a user may make a choice. The first
item in the array is considered by RDF to be the default value.

A common example is an array that contains the same logical text (such as a title or copyright)
in multiple languages. This is known as a language alternative; it is described further in
“Language Alternatives” on page 18.

Property Qualifiers

Any individual property value may have other properties attached to it; these attached
properties are called property qualifiers. They are in effect “properties of properties”; they can
provide additional information about the property value. For example, a digital resource
representing a musical production might have one or more authors, specified using the
dc:creator property, which is an array (see the figure below). Each array value might have a
property qualifier called ns:role, which could take a value of "composer" or "lyricist" or
possibly other values.

NOTE: At this time, only simple properties may have qualifiers, and the qualifiers themselves
must be simple values (not structures or arrays). This is because of limitations in early
versions of the Adobe XMP Toolkit.

18 June 2005 XMP Specification

XMP Data Model
Property Values

2

Property qualifiers allow values to be extended without breaking existing usage. For example,
the ns:role qualifier in the diagram does not interfere with readers who simply want the
dc:creator names. An alternative would be to change dc:creator values to structures with name
and role fields, but that would confuse old software that expected to find a simple value.

The most common specific use of property qualifiers is for language alternative arrays (see
next section).

Language Alternatives

Language alternatives allow the text value of a property to be chosen based on a desired
language. Each item in a language alternative array is a simple text value, which must have a
language qualifier associated with it. The language qualifier is a property qualifier, as
described in the previous section. Its property name is xml:lang, and its value is a string that
conforms to RFC 3066 notation (see http://www.ietf.org/rfc/rfc3066.txt.).

dc:creator

"William Gilbert"

"lyricist"

ns:role

Pirates of Penzance

seq

"Arthur Sullivan"

"composer"

ns:role

1
2

http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt

XMP Specification June 2005 19

XMP Data Model
Property Values

2

XMP requires the "x-default" language code to be supplied as the default. It should be
the first item in the array, so that RDF-aware applications that are unaware of XMP will also
use it. The figure below shows an example:

XMP_Specification.pdf

dc:title

"XMP - Extensible

"XMP – Piattaforma Estendible di Metadata"

"XMP - Une Platforme Extensible

alt

3

4

"x-default"

"fr-fr"

"it-it"xml:lang

xml:lang

xml:lang

1

pour les Métadonnées"

Metadata Platform" "XMP - Extensible

"en-us"

xml:lang

Metadata Platform"

2

20 June 2005 XMP Specification

XMP Data Model
Property Values

2

XMP Specification June 2005 21

3 XMP Storage Model

This chapter describes how XMP metadata that conforms to the data model discussed in the
previous chapter is stored (serialized) in files.

● XMP properties are serialized as XML, specifically RDF (see “Serializing XMP”, below).

● The serialized data is wrapped in packets for embedding in files. “XMP Packets” on
page 30 describes the structure and capabilities of these packets.

● Packets are stored in files in a natural manner for each file format; specific file formats are
discussed in Chapter 5, “Embedding XMP Metadata in Application Files”.

● “External Storage of Metadata” on page 35 describes how to store XMP data in a separate
file from the document with which it is associated.

Serializing XMP

In order to represent the metadata properties associated with a document (that is, to serialize it
in a file), XMP makes use of the Resource Description Framework (RDF) standard, which is
based on XML. By adopting the RDF standard, XMP benefits from the documentation, tools,
and shared implementation experience that come with an open W3C standard. RDF is
described in the W3C document Resource Description Framework (RDF) Model and Syntax
Specification at http://www.w3.org/TR/REC-rdf-syntax/.

The sections below describe the high-level structure of XMP data in an XMP Packet:

● The outermost element is optionally an x:xmpmeta element, which contains a single
rdf:RDF element (or the rdf:RDF element can be outermost).

● The rdf:RDF element contains one or more rdf:Description elements

● Each Description element contains one or more XMP Properties.

The examples in this document are shown in RDF syntax. RDF has multiple ways to serialize
the same data model: a “typical” or verbose way, and several forms of shorthand. The
examples shown here use the typical way plus a few forms of shorthand used by the Adobe
XMP Toolkit; they are designed to assist human readers of stored XMP. Any valid shorthand
may be used.

XMP supports a subset of RDF; see “RDF Issues” on page 29 for further information.

XMP must be serialized as Unicode. XMP supports the full Unicode character set, and is
stored in files using one of the five Unicode encodings. The entire XMP packet must use a
single encoding. Individual file formats can, and generally do, specify a particular encoding,
often UTF-8. For details, see the descriptions of file formats in Chapter 5, “Embedding XMP
Metadata in Application Files”.

http://www.w3.org/TR/REC-rdf-syntax/

22 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

3

x:xmpmeta element

It is recommended that an x:xmpmeta element be the outermost XML element in the
serialized XMP data, to simplify locating XMP metadata in general XML streams. The format
is:

<x:xmpmeta xmlns:x='adobe:ns:meta/'>
...the serialized XMP metadata

</x:xmpmeta>

The xmpmeta element can have any number of attributes, in any order. All unrecognized
attributes are ignored, and there are no required attributes. The only defined attribute at present
is x:xmptk, written by the Adobe XMP Toolkit; its value is the version of the toolkit.

NOTE: Earlier versions of XMP suggested use of the x:xapmeta element. Applications
filtering input should recognize both.

rdf:RDF element

Immediately within the x:xmpmeta element should be a single rdf:RDF element.

<x:xmpmeta xmlns:x='adobe:ns:meta/'>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

...
</rdf:RDF>

</x:xmpmeta>

rdf:Description elements

The rdf:RDF element can contain one or more rdf:Description elements. The following
example shows a single rdf:Description element:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=""

 xmlns:dc="http://purl.org/dc/elements/1.1/">
... Dublin Core properties go here

</rdf:Description>
</rdf:RDF>

By convention, all properties from a given schema, and only that schema, are listed within a
single rdf:Description element. (This is not a requirement, just a means to improve
readability.) In this example, properties from the Dublin Core schema are specified within the
rdf:Description element. The xmlns:dc attribute defines the namespace prefix (dc:) to
be used. Properties from other schemas would be specified inside additional
rdf:Description elements.

NOTE: The rdf:Description element is also used when specifying structured properties
(see “Structures” on page 25).

XMP Specification June 2005 23

XMP Storage Model
Serializing XMP

3

The rdf:about attribute

The rdf:about attribute on the rdf:Description element is a required attribute that
identifies the resource whose metadata this XMP describes. The value of this attribute should
generally be empty. Otherwise it may be a URI that names the resource in some manner that is
meaningful to the application writing the XMP. The XMP Specification does not mandate or
recommend any particular interpretation for this URI.

All rdf:Description elements within an rdf:RDF element must have the same value for
their rdf:about attributes.

Instance IDs

When referring to computer files, there can often be ambiguity. The contents of a file can
change over time. Depending on the situation, it might be desirable to refer to either:

● a specific state of the file as it exists at a point in time, or

● the file in general, as a persistent container whose content can change.

Some characteristics of a file (such as the application that created it) would normally be
expected to be persistent over its life. Other characteristics (such as word count) would be
expected to change as the content of the file changes. Some characteristics (such as copyright
information or authors’ names) might or might not change.

In the same way, XMP properties that represent such characteristics of a file are inherently
ambiguous as to whether they refer to the current content of a file or to the file in general.
XMP itself provides no mechanisms for distinguishing these. Schemas are encouraged, but not
required, to define properties in a way that makes this clear.

This document uses the term resource to refer to the “thing the metadata is about.” Depending
on the context, resources may refer to either the specific or persistent aspects described above.
In order to refer unambiguously to a specific state of the file, we use the term instance.

NOTE: This terminology should be distinguished from HTTP terminology, where resource is
most often used in the sense of “container”, while entity or entity-part is always used to
mean “the current content of all or part of a resource at some point in time.”

The instance IDs mentioned above are specific IDs, since they are created every time a file is
saved. They do not provide any connection between different versions of a document.
However, in many cases, an instance ID can also be used to locate the resource, because if the
instance referred to is the content of a resource at some point in time, the instance identifier
also denotes that resource at that time. Therefore, using an instance ID in the rdf:about
attribute allows identification of both the resource and the particular content it had at the time
the metadata was generated or stored.

NOTE: In some situations, more persistent identification might be desired. It can be provided
by using the xmpMM:DocumentID property in the XMP Media Management schema.

An instance ID should be a GUID/UUID-style ID, which is a large integer that is guaranteed to
be globally unique (in practical terms, the probability of a collision is so remote as to be

24 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

3

effectively impossible). Typically 128- or 144-bit integers are used, encoded as 22 or 24 base-
64 characters.

XMP does not require any specific scheme for generating the unique number. There are
various common schemes available for that purpose, such as:

● Using physical information such as a local Ethernet address and a high resolution clock.

NOTE: When creating a unique ID, applications must consider tradeoffs between privacy
and the desire to create an audit trail. Adobe applications favor privacy and do not
include Ethernet addresses.

● Using a variety of locally unique and random data, then computing an MD5 hash value.
This avoids privacy concerns about the use of Ethernet addresses. It also allows for
regeneration of the ID in some cases; for example if the MD5 hash is computed using the
image contents for a resource that is a digital photograph.

Because the rdf:about attribute is the only identification of the resource from the RDF point
of view, it is useful to format its value in a standard manner. This lets other RDF-aware
software know what kind of URI is used (in particular, that it is not a URL). There is no formal
W3C recommendation for URIs that are based on an abstract UUID. The following two
proposals may be relevant:

● http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-01.txt

● http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-03.txt

XMP Properties

This section shows how the properties diagrammed in “Property Values” on page 15 would be
serialized in XMP. The data diagrams are repeated for convenience.

Simple Types

XMP_Specification.pdf

dc:format xmp:CreateDate

"application/pdf" "2002-08-15T17:10:04Z"

http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-01.txt
http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-03.txt

XMP Specification June 2005 25

XMP Storage Model
Serializing XMP

3

In XMP, these properties would specified as follows:

<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:format>application/pdf</dc:format>

</rdf:Description>

<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
<xmp:CreateDate>2002-08-15T17:10:04Z</xmp:CreateDate>

</rdf:Description>

Alternatively, there is a common form of RDF shorthand that writes simple properties as
attributes of the rdf:Description element. The second rdf:Description element above
would be specified as follows:

<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmp:CreateDate="2002-08-15T17:10:04Z"/>

NOTE: All property names must be legal XML names.

Structures

This example shows a property that is a structure containing three fields. It would be serialized
in XML as:

<rdf:Description rdf:about=""
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/">

<xmpTPg:MaxPageSize>
<rdf:Description

xmlns:stDim="http:ns.adobe.com/xap/1.0/sType/Dimensions#">
<stDim:w>4</stDim:w>
<stDim:h>3</stDim:h>
<stDim:unit>inches</stDim:unit>

</rdf:Description>
</xmpTPg:MaxPageSize>

</rdf:Description>

The element hierarchy consists of:

● The rdf:Description element, described above, which specifies the namespace for the
property.

XMP_Specification.pdf

xmpTPg:MaxPageSize

stDim:w

stDim:h

stDim:unit

"8.5"

"11.0"

"inch"

26 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

3

● The xmpTPg:MaxPageSize element, which is a property of type Dimensions

● An inner rdf:Description element, which is necessary to declare the presence of a
structure. It also defines the namespace that is used by the structure fields. Inner
rdf:Description elements do not have an rdf:about attribute.

NOTE: Structure fields are not required to use a schema namespace; they must conform to
the rules of XML qualified names.

● The fields of the Dimensions structure.

Arrays

This example (from “Arrays” on page 16) is serialized as follows:

<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:subject>

<rdf:Bag>
<rdf:li>metadata</rdf:li>
<rdf:li>schema</rdf:li>
<rdf:li>XMP</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>

The dc:subject property is an unordered array, represented by the type rdf:Bag. It contains
one rdf:li element for each item in the array. Ordered and alternative arrays are similar,
except that they use the types rdf:Seq and rdf:Alt, respectively. An example of an
alternative array is shown below in “Language Alternatives”.

XMP_Specification.pdf

dc:subject

1

"metadata"
"schema" "XMP"

bag

2
3

XMP Specification June 2005 27

XMP Storage Model
Serializing XMP

3

Property Qualifers

Property qualifiers can be serialized in one of two ways:

● There is a general representation, as shown in the following figure.

● There is a special representation for xml:lang qualifiers (see “Language Alternatives” on
page 28)

Here is a general example, repeated from “Property Qualifiers” on page 17.

The figure above shows an array with two elements, each of which has a property qualifier
called ns:role (defined in the fictitious namespace “ns:myNamespace/”). It would be
serialized as follows:

<rdf:Description rdf:about=""
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ns="ns:myNamespace/">

<dc:creator>
<rdf:Seq>

<rdf:li>
<rdf:Description>

<rdf:value>William Gilbert</rdf:value>
<ns:role>lyricist</ns:role>

</rdf:Description>
</rdf:li>
<rdf:li>

<rdf:Description >
<rdf:value>Arthur Sullivan</rdf:value>
<ns:role>composer</ns:role>

</rdf:Description>
</rdf:li>

</rdf:Seq>
</dc:creator>

</rdf:Description>

dc:creator

"William Gilbert"

"lyricist"

ns:role

Pirates of Penzance

seq

"Arthur Sullivan"

"composer"

ns:role

1
2

28 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

3

The presence of property qualifiers is indicated by a special use of the rdf:Description
element. Each rdf:li array item in the example contains an rdf:Description element,
which itself contains the following:

● a special element called rdf:value that represents the value of the property

● zero or more other elements that represent qualifiers of the value. In this case, there is one
property qualifier called ns:role.

Language Alternatives

Text properties may have an xml:lang property qualifier that specifies the language of the text.
A common use is with language alternative arrays.

Language alternatives are a form of rdf:Alt array, referred to as the Lang Alt type. In this
example, each array item is a simple text value; the value has a property qualifier, specified as
the property xml:lang, giving the language of that value.

The XMP for this array looks like this:

<xmp:Title>
 <rdf:Alt>

<rdf:li xml:lang="x-default">
XMP - Extensible Metadata Platform </rdf:li>

 <rdf:li xml:lang="en-us">XMP - Extensible Metadata Platform</rdf:li>
 <rdf:li xml:lang="fr-fr">

XMP - Une Platforme Extensible pour les Métadonnées</rdf:li>
 <rdf:li xml:lang="it-it">

XMP - Piattaforma Estendible di Metadata</rdf:li>
 </rdf:Alt>
</xmp:Title>

XMP_Specification.pdf

dc:title

"XMP - Extensible

"XMP – Piattaforma Estendible di Metadata"

"XMP - Une Platforme Extensible

alt

3

4

"x-default"

"fr-fr"

"it-it"xml:lang

xml:lang

xml:lang

1

pour les Métadonnées"

Metadata Platform" "XMP - Extensible

"en-us"

xml:lang

Metadata Platform"

2

XMP Specification June 2005 29

XMP Storage Model
Serializing XMP

3

The xml:lang qualifier is written as an attribute of the XML element whose character data is the
value (in this case, the rdf:li elements). Note also the special language value
"x-default", which specifies the default title to be used.

RDF Issues

Unsupported Features

XMP uses a subset of RDF. Valid XMP is limited to the RDF described in the previous
sections, along with all equivalent shorthand. All XMP is valid RDF, but a number of features
of the RDF specification are not valid XMP, in particular:

● The rdf:RDF element is required by XMP (it is optional in RDF).

● Top-level elements must be rdf:Description elements.

● The rdf:ID attribute is ignored.

● The rdf:bagID attribute is ignored.

● The rdf:aboutEach or rdf:aboutEachPrefix attributes are not supported (entire
rdf:Description ignored).

● The rdf:parseType='Literal' attribute is not supported.

● Top-level RDF typed nodes are not supported.

Validation

If DTD or XML Schema validation is required, be aware that RDF provides many equivalent
ways to express the same model. Also, the open nature of XMP means that it is in general not
possible to predict or desirable to constrain the allowable set of XML elements and attributes.
There appears to be no way to write a DTD that allows arbitrary elements and attributes. Even
use of ANY requires declared child elements (see validity constraint #4 in section 3 of the
XML specification).

The recommended approach to placing XMP in XML using DTD validation is to wrap the
XMP Packet in a CDATA section. This requires escaping any use of “]]>” in the packet.

rdf:about Property

All rdf:Description elements within an rdf:RDF element must have the same value for
their rdf:about attributes.

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/XML/

30 June 2005 XMP Specification

XMP Storage Model
XMP Packets

3

XMP Packets

The XMP Packet format specifies how XMP metadata is embedded in files. It consists of a
“wrapper” around the serialized XMP data described in the previous section. XMP Packets:

● may be embedded in a wide variety of binary and text formats, including native XML files.

● are delimited by easy-to-scan markers. Such markers are XML syntax-compatible to allow
transmission to an XML parser without additional filtering.

● deal with arbitrary positioning within a byte stream (so as not to rely on machine word
boundaries, and so on).

● enable in-place editing, including expansion, of metadata.

● allow multiple packets to be embedded in a single data file.

Chapter 5, “Embedding XMP Metadata in Application Files”, gives information on how XMP
Packets are embedded in specific file formats. Applications may also scan files for XMP
Packets without knowledge of the file format itself, although this should be regarded as a last
resort (see “Scanning Files for XMP Packets” on page 33).

The following figure shows a schematic of an XMP Packet. It contains a header, XML data,
padding, and a trailer.

Here is an outline of an XMP Packet, showing the text of the header and trailer:

<?xpacket begin="■" id="W5M0MpCehiHzreSzNTczkc9d"?>
 ... the serialized XMP as described above: ...

<x:xmpmeta xmlns:x="adobe:ns:meta/">
<rdf:RDF xmlns:rdf= ...>

...
</rdf:RDF>

</x:xmpmeta>
... XML whitespace as padding ...
<?xpacket end="w"?>

Where ‘■’ represents the Unicode “zero width non-breaking space character” (U+FEFF) used
as a byte-order marker.

Header

Serialized XMP

Padding

Trailer

XMP Specification June 2005 31

XMP Storage Model
XMP Packets

3

An XMP Packet must conform to the Well-Formedness requirements of the XML
specification, except for the lack of an XML declaration at its start. Different packets in a file
can be in different character encodings, and packets must not nest.

The following sections describe the parts of the packet illustrated above.

Header

The header is an XML processing instruction of the form:

<?xpacket ... ?>

The processing instruction contains information about the packet in the form of XML
attributes. There are two required attributes: begin and id, in that order. Other attributes can
follow in any order; unrecognized attributes should be ignored. Attributes must be separated
by exactly one space (U+0020) character.

Attribute: begin

This required attribute indicates the beginning of a new packet. Its value is the Unicode zero-
width non-breaking space character U+FEFF, in the appropriate encoding (UTF-8, UTF-16, or
UTF-32). It serves as a byte-order marker, where the character is written in the natural order of
the application (consistent with the byte order of the XML data encoding).

For backward compatibility with earlier versions of the XMP Packet specification, the value of
this attribute can be the empty string, indicating UTF-8 encoding.

“Scanning Files for XMP Packets” on page 33 describes how an XMP Packet processor
should read a single byte at a time until it has successfully determined the byte order and
encoding.

Attribute: id

The required id attribute must follow begin. For all packets defined by this version of the
syntax, the value of id is the following string of 7-bit ASCII characters:

W5M0MpCehiHzreSzNTczkc9d

The string must be encoded in the character encoding of the overall packet. For example, if the
overall encoding is big-endian UTF-16, the id value should be converted from 7-bit ASCII to
UTF-16 by inserting nulls.

Attribute: bytes

NOTE: This attribute is deprecated.

The optional bytes attribute specifies the total length of the packet in bytes, which can allow
faster scanning of XMP Packets. If the length extends beyond the end of the trailer processing
instruction, the additional bytes must be properly encoded Unicode whitespace and are
considered padding.

32 June 2005 XMP Specification

XMP Storage Model
XMP Packets

3

Use the bytes attribute only for an XMP Packet embedded in a binary file. Do not use it for
XMP Packets embedded in text files, since the length of text can innocently change when
moved among computers. For example, moving a text file from a Macintosh or UNIX system
to Windows typically causes all single byte line endings (CR or LF) to become two bytes
(CRLF). This would invalidate the length given by the bytes attribute.

Attribute: encoding

NOTE: This attribute is deprecated.

The optional encoding attribute is identical to the encoding attribute in the XML
declaration (see productions [23] and [80] in the XML specification). It specifies the character
encoding of the entire packet. It should be consistent with the Unicode encoding implied by
the begin attribute.

XMP Data

The bytes of the XMP data are placed here. Their encoding must match the encoding implied
by the header’s begin attribute. The structure of the data is described in “Serializing XMP”
above.

The XMP data should not contain an XML declaration. The XML specification requires that the
XML declaration be “the first thing in the entity”; this is not the case for an embedded XMP
Packet.

NOTE: An XMP Packet should not contain other XML that does not conform to XMP.

Padding

It is recommended that applications allocate 2 KB to 4 KB of padding to the packet. This
allows the XMP to be edited in place, and expanded if necessary, without overwriting existing
application data. The padding must be XML-compatible whitespace; the recommended
practice is to use the space character (U+0020) in the appropriate encoding, with a newline
about every 100 characters.

Trailer

This required processing instruction indicates the end of the XMP Packet.

<?xpacket end='w'?>

Attribute: end

The end attribute is required, and must be the first attribute.

NOTE: Other unrecognized attributes can follow, but should be ignored. Attributes must be
separated by exactly one space (U+0020) character.

http://www.w3.org/TR/REC-xml

XMP Specification June 2005 33

XMP Storage Model
XMP Packets

3

The value of end indicates whether applications that do not understand the containing file
format are allowed to update the XMP Packet:

● r means the packet is “read-only” and must not be updated in place.

NOTE: r is not meant to restrict the behavior of applications that understand the file format
and are capable of properly rewriting the file.

● w means the packet can be updated in place, if there is enough space. The overall length of
the packet must not be changed; padding should be adjusted accordingly. The original
encoding and byte order must be preserved, to avoid breaking text files containing XMP or
violating other constraints of the original application.

Scanning Files for XMP Packets

This section explains how files can be scanned for XMP Packets, and why this should be done
with caution.

Caveats

Knowledge of individual file formats provides the best way for an application to get access to
XMP Packets. See Chapter 5, “Embedding XMP Metadata in Application Files” for detailed
information on how XMP data is stored in specific file formats.

Lacking this information, applications can find XMP Packets by scanning the file. However,
this should be considered a last resort, especially if it is necessary to modify the data. Without
knowledge of the file format, simply locating packets may not be sufficient. The following are
some possible drawbacks:

● It may not be possible to determine which resource the XMP is associated with. If a JPEG
image with XMP is placed in a page layout file of an application that is unaware of XMP,
that file has one XMP Packet that refers to just the image, not the entire layout.

● When there is more than one XMP Packet in a file, it may be impossible to determine
which is the “main” XMP, and what the overall resource containment hierarchy is in a
compound document.

● Some packets could be obsolete. For example, PDF files allow incremental saves.
Therefore, when changes are made to the document, there might be multiple packets, only
one of which reflects the current state of the file.

Scanning Hints

A file should be scanned byte-by-byte until a valid header is found. First, the scanner should
look for a byte pattern that represents the text

<?xpacket begin=

which will be one of the following byte patterns:

34 June 2005 XMP Specification

XMP Storage Model
XMP Packets

3

● 8-bit encoding (UTF-8, ASCII 7-bit, ISOLatin-1):
0x3C 0x3F 0x78 0x70 0x61 0x63 0x6B
0x65 0x74 0x20 0x62 0x65 0x67 0x69 0x6E 0x3D

● 16-bit encoding (UCS-2, UTF-16): (either big- or little-endian order)
0x3C 0x00 0x3F 0x00 0x78 0x00 0x70 0x00 0x61 0x00
0x63 0x00 0x6B 0x00 0x65 0x00 0x74 0x00 0x20 0x00 0x62 0x00
0x65 0x00 0x67 0x00 0x69 0x00 0x6E 0x00 0x3D [0x00]

● 32-bit encoding (UCS-4): the pattern is similar to the UCS-2 pattern above, except with
three 0x00 bytes for every one in the UCS-2 version.

For 16-bit encodings, a scanner cannot be sure whether the 0x00 values are in the high- or
low-order half of the character until it reads the byte-order mark (the value of the begin
attribute). As you can see from the pattern, it starts with the first non-zero value, regardless of
byte order, which means that there might or might not be a terminal 0x00 value.

A scanner can choose to simply skip 0x00 values and search for the 8-bit pattern. Once the
byte order is established, the scanner should switch to consuming characters rather than bytes.

After finding a matching byte pattern, the scanner must consume a quote character, which can
be either the single quote (apostrophe) (U+0027) or double quote (U+0022) character.

NOTE: Individual attribute values in the processing instruction can have either single or
double quotes. The following header is well-formed:
<?xpacket begin="■" id='W5M0MpCehiHzreSzNTczkc9d'?>

The scanner is now ready to read the value of the begin attribute, followed by the closing
quote character:

UTF-8: 0xEF 0xBB 0xBF

UTF-16, big-endian: 0xFE 0xFF

UTF-16, little-endian: 0xFF 0xFE

UTF-32, big-endian: 0x00 0x00 0xFE 0xFF

UTF-32, little-endian: 0xFF 0xFE 0x00 0x00

NOTE: If the attribute has no value, the encoding is UTF-8.

The scanner now has enough information to process the rest of the header in the appropriate
character encoding.

XMP Specification June 2005 35

XMP Storage Model
External Storage of Metadata

3

External Storage of Metadata

It is suggested, though not required, that XMP metadata be embedded in the file that the
metadata describes (as XMP Packets). There are cases where this is not appropriate or
possible, such as database storage models, extremes of file size, or due to format and access
issues. Small content intended to be frequently transmitted over the Internet might not tolerate
the overhead of embedded metadata. Archival systems for video and audio might not have any
means to represent the metadata. In addition, some high-end digital cameras have a
proprietary, non-extensible file format for “raw” image data and typically store EXIF metadata
as a separate file.

If metadata is stored separately from content, there is a risk that the metadata can be lost. The
question arises of how to associate the metadata with the file containing the content.
Applications should:

● Write the external file as a complete well-formed XML document, including the leading
XML declaration.

● The file extension should be .xmp. For Mac OS, optionally set the file’s type to 'TEXT'.

● If a MIME type is needed, use application/rdf+xml.

● Write external metadata as though it were embedded and then had the XMP Packets
extracted and catenated by a postprocessor.

● If possible, place the instance ID used in the rdf:about attribute within the file the XMP
describes, so that format-aware applications can make sure they have the right metadata.

For applications that need to find external XMP files, look in the same directory for a file with
the same name as the main document but with an .xmp extension. (This is called a sidecar
XMP file.)

36 June 2005 XMP Specification

XMP Storage Model
External Storage of Metadata

3

XMP Specification June 2005 37

4 XMP Schemas

This chapter contains the following information:

● Definitions for the standard XMP Schemas
– “Dublin Core Schema” on page 39
– “XMP Basic Schema” on page 40
– “XMP Rights Management Schema” on page 42
– “XMP Media Management Schema” on page 43
– “XMP Basic Job Ticket Schema” on page 46
– “XMP Paged-Text Schema” on page 47
– “XMP Dynamic Media Schema” on page 48

● Definitions for a set of specialized schemas:
– “Adobe PDF Schema” on page 53
– “Photoshop Schema” on page 54
– “Camera Raw Schema” on page 55
– “EXIF Schemas” on page 58

● Definitions and explanations of property values used by the schemas (“Property Value
Types” on page 73)

● Guidelines for extending XMP (“Extensibility of Schemas” on page 87).

NOTE: This document does not provide details of the IPTC schema. For complete information
on this schema, see the IPTC Web site at http://www.iptc.org/IPTC4XMP/.

XMP metadata may include properties from one or more of the schemas. For example, a
typical subset used by many Adobe applications might include the following:

● Dublin Core schema: dc:title, dc:creator, dc:description, dc:subject, dc:format,
dc:rights

● XMP basic schema:xmp:CreateDate, xmp:CreatorTool, xmp:ModifyDate ,
xmp:MetadataDate

● XMP rights management schema: xmpRights:WebStatement, xmpRights:Marked

● XMP media management schema: xmpMM:DocumentID

http://www.iptc.org/IPTC4XMP/

38 June 2005 XMP Specification

XMP Schemas
XMP Schema Definitions

4

XMP Schema Definitions

The schema definitions in this chapter show the namespace string that identifies the schema,
and a preferred schema namespace prefix, followed by a table that lists all properties defined
for the schema. Each table has the following columns:

● Property: the name of the property, including the preferred namespace prefix.

● Value Type: The value type of the property, with links to where each value type is
described in “Property Value Types” on page 73. Array types are preceded by the container
type: alt, bag, or seq. (see “Arrays” on page 16 for details).

● Category: Schema properties are internal or external:
– Internal metadata must be maintained by an application. It can include system-level

information (such as modification date) or information that an editing application has
access to (such as the number of words in a document). An example is xmp:ModifyDate.
Users should not be allowed to change the values of such properties. When a file is saved,
an application should provide valid values for all internal properties. If an application
does not set the value of an internal property, it should discard any value that may have
existed previously.

– External metadata must be set by a user, and is independent of the contents of the
document. External modifications should be displayed by the editing application but are
not acted upon. Unless changed by the user, external properties are preserved on output.
An example is dc:creator.

● Description: The description of the property.

NOTE: Some XMP properties have been deprecated since earlier versions of the specification.
They are defined here for compatibility purposes, but should not be used in the future.

NOTE: Previous versions of this specification referred to aliased properties. Specific XMP
implementations may treat a property in one schema as equivalent to a property in
another schema. However, to foster interchange, applications must always write the
standard, “base” form of the property. In this version of the specification, only the base
properties are listed.

The schemas define a set of properties. In any given XMP, a property may be:

● Absent; that is, it has no value. Properties are absent until given a value for the first time.

● Present; that is, it has a defined value.

NOTE: A present property may have the empty string as its value; this is different from an
absent property. However, writers are encouraged not to set properties with a value
of the empty string.

For any given XMP, there is no requirement that all properties from a given schema must be
present. For structured properties, there is no requirement that all fields be present (unless
otherwise specified by a schema).

XMP Specification June 2005 39

XMP Schemas
Dublin Core Schema

4

Dublin Core Schema

The Dublin Core schema provides a set of commonly used properties.

● The schema namespace URI is http://purl.org/dc/elements/1.1/

● The preferred schema namespace prefix is dc

Property Value Type Category Description

dc:contributor bag ProperName External Contributors to the resource (other than the authors).

dc:coverage Text External The extent or scope of the resource.

dc:creator seq ProperName External The authors of the resource (listed in order of precedence, if
significant).

dc:date seq Date External Date(s) that something interesting happened to the resource.

dc:description Lang Alt External A textual description of the content of the resource. Multiple
values may be present for different languages.

dc:format MIMEType Internal The file format used when saving the resource. Tools and
applications should set this property to the save format of the
data. It may include appropriate qualifiers.

dc:identifier Text External Unique identifier of the resource.

dc:language bag Locale Internal An unordered array specifying the languages used in the
resource.

dc:publisher bag ProperName External Publishers.

dc:relation bag Text Relationships to other documents.

dc:rights Lang Alt External Informal rights statement, selected by language.

dc:source Text External Unique identifier of the work from which this resource was
derived.

dc:subject bag Text External An unordered array of descriptive phrases or keywords that
specify the topic of the content of the resource.

dc:title Lang Alt External The title of the document, or the name given to the resource.

Typically, it will be a name by which the resource is
formally known.

dc:type bag open Choice External A document type; for example, novel, poem, or working
paper.

40 June 2005 XMP Specification

XMP Schemas
XMP Basic Schema

4

XMP Basic Schema

The XMP Basic Schema contains properties that provide basic descriptive information.

● The schema namespace URI is http://ns.adobe.com/xap/1.0/

● The preferred schema namespace prefix is xmp

Property Value Type Category Description

xmp:Advisory bag XPath External An unordered array specifying properties that were
edited outside the authoring application.

Each item should contain a single namespace and XPath
separated by one ASCII space (U+0020).

xmp:BaseURL URL Internal The base URL for relative URLs in the document
content. If this document contains Internet links, and
those links are relative, they are relative to this base
URL.

This property provides a standard way for embedded
relative URLs to be interpreted by tools. Web authoring
tools should set the value based on their notion of where
URLs will be interpreted.

xmp:CreateDate Date Internal The date and time the resource was originally created.

xmp:CreatorTool AgentName Internal The name of the first known tool used to create the
resource. If history is present in the metadata, this value
should be equivalent to that of xmpMM:History’s
softwareAgent property.

xmp:Identifier bag Text External An unordered array of text strings that unambiguously
identify the resource within a given context. An array
item may be qualified with xmpidq:Scheme to denote
the formal identification system to which that identifier
conforms.

NOTE: The dc:identifier property is not used because it
lacks a defined scheme qualifier and has been
defined in the XMP Specification as a simple
(single-valued) property.

xmp:Label Text External A word or short phrase that identifies a document as a
member of a user-defined collection. Used to organize
documents in a file browser.

xmp:MetadataDate Date Internal The date and time that any metadata for this resource
was last changed. It should be the same as or more
recent than xmp:ModifyDate.

XMP Specification June 2005 41

XMP Schemas
XMP Basic Schema

4

An item in the xmp:Identifier array may be qualified with xmpidq:Scheme to denote the
formal identification system to which that identifier conforms.

● The qualifier namespace URI is
http://ns.adobe.com/xmp/Identifier/qual/1.0/

● The preferred qualifier namespace prefix is xmpidq

xmp:ModifyDate Date Internal The date and time the resource was last modified.

NOTE: The value of this property is not necessarily the
same as the file’s system modification date
because it is set before the file is saved.

xmp:Nickname Text External A short informal name for the resource.

xmp:Rating Closed Choice of
Integer

External A number that indicates a document’s status relative to
other documents, used to organize documents in a file
browser. Values are user-defined within an application-
defined range.

xmp:Thumbnails alt Thumbnail Internal An alternative array of thumbnail images for a file,
which can differ in characteristics such as size or image
encoding.

Qualifier Value Type Category Description

xmpidq:Scheme Text External The name of the formal identification system used in the
value of the associated xmp:Identifier item.

Property Value Type Category Description

42 June 2005 XMP Specification

XMP Schemas
XMP Rights Management Schema

4

XMP Rights Management Schema

This schema includes properties related to rights management. These properties specify
information regarding the legal restrictions associated with a resource.

NOTE: XMP is not a rights-enforcement mechanism.

● The schema namespace URI is http://ns.adobe.com/xap/1.0/rights/

● The preferred schema namespace prefix is xmpRights

Property Value Type Category Description

xmpRights:Certificate URL External Online rights management certificate.

xmpRights:Marked Boolean External Indicates that this is a rights-managed resource.

xmpRights:Owner bag ProperName External An unordered array specifying the legal owner(s)
of a resource.

xmpRights:UsageTerms Lang Alt External Text instructions on how a resource can be
legally used.

xmpRights:WebStatement URL External The location of a web page describing the owner
and/or rights statement for this resource.

XMP Specification June 2005 43

XMP Schemas
XMP Media Management Schema

4

XMP Media Management Schema

The XMP Media Management Schema is primarily for use by digital asset management
(DAM) systems.

The following properties are “owned” by the DAM system and should be set by applications
under their direction; they should not be used by unmanaged files: xmpMM: ManagedFrom,
xmpMM:Manager, xmpMM:ManageTo, xmpMM:ManageUI, xmpMM:
ManagerVariant.

The following properties are owned by the DAM system for managed files, but can also be
used by applications for unmanaged files: xmpMM:DerivedFrom, xmpMM:DocumentID,
xmpMM: RenditionClass, xmpMM: RenditionParams, xmpMM:VersionID,
xmpMM:Versions.

The xmpMM:History property is always owned by the application.

● The schema namespace URI is http://ns.adobe.com/xap/1.0/mm/

● The preferred schema namespace prefix is xmpMM

Property Value Type Category Description

xmpMM:DerivedFrom ResourceRef Internal A reference to the original document from which
this one is derived. It is a minimal reference;
missing components can be assumed to be
unchanged. For example, a new version might
only need to specify the instance ID and version
number of the previous version, or a rendition
might only need to specify the instance ID and
rendition class of the original.

xmpMM:DocumentID URI Internal The common identifier for all versions and
renditions of a document. It should be based on a
UUID; see “The rdf:about attribute” on page 23.

xmpMM:History seq
ResourceEvent

Internal An ordered array of high-level user actions that
resulted in this resource. It is intended to give
human readers a general indication of the steps
taken to make the changes from the previous
version to this one. The list should be at an
abstract level; it is not intended to be an exhaustive
keystroke or other detailed history.

44 June 2005 XMP Specification

XMP Schemas
XMP Media Management Schema

4

xmpMM:
ManagedFrom

ResourceRef Internal A reference to the document as it was prior to
becoming managed. It is set when a managed
document is introduced to an asset management
system that does not currently own it. It may or
may not include references to different
management systems.

xmpMM:Manager AgentName Internal The name of the asset management system that
manages this resource. Along with xmpMM:
ManagerVariant, it tells applications which asset
management system to contact concerning this
document.

xmpMM:ManageTo URI Internal A URI identifying the managed resource to the
asset management system; the presence of this
property is the formal indication that this resource
is managed. The form and content of this URI is
private to the asset management system.

xmpMM:ManageUI URI Internal A URI that can be used to access information
about the managed resource through a web
browser. It might require a custom browser plug-
in.

xmpMM:
ManagerVariant

Text Internal Specifies a particular variant of the asset
management system. The format of this property
is private to the specific asset management system.

xmpMM:
RenditionClass

RenditionClass Internal The rendition class name for this resource. This
property should be absent or set to default for
a document version that is not a derived rendition.

xmpMM:
RenditionParams

Text Internal Can be used to provide additional rendition
parameters that are too complex or verbose to
encode in xmpMM: RenditionClass.

xmpMM:VersionID Text Internal The document version identifier for this resource.

Each version of a document gets a new identifier,
usually simply by incrementing integers 1, 2, 3 . . .
and so on. Media management systems can have
other conventions or support branching which
requires a more complex scheme.

Property Value Type Category Description

XMP Specification June 2005 45

XMP Schemas
XMP Media Management Schema

4

xmpMM:Versions seq Version Internal The version history associated with this resource.
Entry [1] is the oldest known version for this
document, entry [last()] is the most recent
version.

Typically, a media management system would fill
in the version information in the metadata on
check-in.

It is not guaranteed that a complete history of
versions from the first to this one will be present in
the xmpMM:Versions property. Interior version
information can be compressed or eliminated and
the version history can be truncated at some point.

xmpMM:LastURL
(deprecated)

URL Internal Deprecated for privacy protection.

xmpMM:RenditionOf
(deprecated)

ResourceRef Internal Deprecated in favor of xmpMM:DerivedFrom.

A reference to the document of which this is a
rendition.

xmpMM:SaveID
(deprecated)

Integer Internal Deprecated. Previously used only to support the
xmpMM:LastURL property.

Property Value Type Category Description

46 June 2005 XMP Specification

XMP Schemas
XMP Basic Job Ticket Schema

4

XMP Basic Job Ticket Schema

The following schema describes very simple workflow or job information.

● The schema namespace URI is http://ns.adobe.com/xap/1.0/bj/

● The preferred schema namespace prefix is xmpBJ

Property Value Type Category Description

xmpBJ:JobRef bag Job External References an external job management file for a job
process in which the document is being used. Use of job
names is under user control. Typical use would be to
identify all documents that are part of a particular job or
contract.

There are multiple values because there can be more than
one job using a particular document at any time, and it can
also be useful to keep historical information about what jobs
a document was part of previously.

XMP Specification June 2005 47

XMP Schemas
XMP Paged-Text Schema

4

XMP Paged-Text Schema

The Paged-Text schema is used for text appearing on a page in a document.

● The schema namespace URI is http://ns.adobe.com/xap/1.0/t/pg/

● The preferred schema namespace prefix is xmpTPg

Property Value Type Category Description

xmpTPg:MaxPageSize Dimensions Internal The size of the largest page in the document (including
any in contained documents).

xmpTPg:NPages Integer Internal The number of pages in the document (including any in
contained documents).

xmpTPg:Fonts Bag Font Internal An unordered array of fonts that are used in the
document (including any in contained documents).

xmpTPg:Colorants Seq Colorant Internal An ordered array of colorants (swatches) that are used
in the document (including any in contained
documents).

xmpTPg:PlateNames Seq Text Internal An ordered array of plate names that are needed to print
the document (including any in contained documents).

48 June 2005 XMP Specification

XMP Schemas
XMP Dynamic Media Schema

4

XMP Dynamic Media Schema

This schema specifies properties used by the Adobe dynamic media group.

● The schema namespace URI is http://ns.adobe.com/xmp/1.0/DynamicMedia/

● The preferred schema namespace prefix is xmpDM

Property Value Type
Catego
ry Description

xmpDM:projectRef ProjectLink Internal A reference to the project that
created this file.

xmpDM:videoFrameRate open Choice of
Text

Internal The video frame rate. One of:
24
NTSC
PAL

xmpDM:videoFrameSize Dimensions Internal The frame size. For example:
w:720, h: 480, unit:pixels

xmpDM:videoPixelAspectRatio Rational Internal The aspect ratio, expressed as
ht/wd. For example: “648/720” =
0.9

xmpDM:videoPixelDepth closed Choice of
Text

 Internal The size in bits of each color
component of a pixel. Standard
Windows 32-bit pixels have 8 bits
per component. One of:
8Int
16Int
32Int
32Float

xmpDM:videoColorSpace closed Choice of
Text

Internal The color space. One of:
sRGB (used by Photoshop)
CCIR-601 (used for NTSC)
CCIR-709 (used for HD)

xmpDM:videoAlphaMode closed Choice of
Text

External The alpha mode. One of:
straight
pre-multiplied

xmpDM:videoAlphaPremultipleColor Colorant External A color in CMYK or RGB to be
used as the pre-multiple color when
alpha mode is pre-multiplied.

xmpDM:videoAlphaUnityIsTransparent Boolean Internal When true, unity is clear, when
false, it is opaque.

XMP Specification June 2005 49

XMP Schemas
XMP Dynamic Media Schema

4

xmpDM:videoCompressor Text Internal Video compression used. For
example, jpeg.

xmpDM:videoFieldOrder closed Choice of
Text

Internal The field order for video. One of:
Upper
Lower
Progressive

xmpDM:pullDown closed Choice of
Text

Internal The sampling phase of film to be
converted to video (pull-down). One
of:
WSSWW
SSWWW
SWWWS
WWWSS
WWSSW
WSSWW_24p
SSWWW_24p
SWWWS_24p
WWWSS_24p
WWSSW_24p

xmpDM:audioSampleRate Integer Internal The audio sample rate. Can be any
value, but commonly 32000, 41100,
or 48000.

xmpDM:audioSampleType closed Choice of
Text

Internal The audio sample type. One of:
8Int
16Int
32Int
32Float

xmpDM:audioChannelType closed Choice of
Text

Internal The audio channel type. One of:
Mono
Stereo
5.1
7.1

xmpDM:audioCompressor Text Internal The audio compression used. For
example, MP3.

xmpDM:speakerPlacement Text External A description of the speaker angles
from center front in degrees. For
example: “Left = -30, Right =
30, Center = 0, LFE = 45, Left

Surround = -110, Right

Surround = 110”

xmpDM:fileDataRate Rational Internal The file data rate in megabytes per
second. For example: “36/10” = 3.6
MB/sec

Property Value Type
Catego
ry Description

50 June 2005 XMP Specification

XMP Schemas
XMP Dynamic Media Schema

4

xmpDM:tapeName Text External The name of the tape from which
the clip was captured, as set during
the capture process.

xmpDM:altTapeName Text External An alternative tape name, set via the
project window or timecode dialog
in Premiere. If an alternative name
has been set and has not been
reverted, that name is displayed.

xmpDM:startTimecode Timecode Internal The timecode of the first frame of
video in the file, as obtained from
the device control.

xmpDM:altTimecode Timecode External A timecode set by the user. When
specified, it is used instead of the
startTimecode.

xmpDM:duration Time Internal The duration of the media file.

xmpDM:scene Text External The name of the scene.

xmpDM:shotName Text External The name of the shot or take.

xmpDM:shotDate Date External The date and time when the video
was shot.

xmpDM:shotLocation Text External The name of the location where the
video was shot. For example:
“Oktoberfest, Munich Germany”
For more accurate positioning, use
the EXIF GPS values.

xmpDM:logComment Text External User’s log comments.

xmpDM:markers seq Marker Internal An ordered list of markers

xmpDM:contributedMedia bag Media Internal An unordered list of all media used
to create this media.

xmpDM:absPeakAudioFilePath URI Internal The absolute path to the file’s peak
audio file. If empty, no peak file
exists.

xmpDM:relativePeakAudioFilePath URI Internal The relative path to the file’s peak
audio file. If empty, no peak file
exists.

xmpDM:videoModDate Date Internal The date and time when the video
was last modified.

Property Value Type
Catego
ry Description

XMP Specification June 2005 51

XMP Schemas
XMP Dynamic Media Schema

4

xmpDM:audioModDate Date Internal The date and time when the audio
was last modified.

xmpDM:metadataModDate Date Internal The date and time when the
metadata was last modified.

xmpDM:artist Text External The name of the artist or artists.

xmpDM:album Text External The name of the album.

xmpDM:trackNumber Integer External A numeric value indicating the
order of the audio file within its
original recording.

xmpDM:genre Text External The name of the genre.

xmpDM:copyright Text External The copyright information.

xmpDM:releaseDate Date External The date the title was released.

xmpDM:composer Text External The composer’s name.

xmpDM:engineer Text External The engineer’s name.

xmpDM:tempo Real Internal The audio’s tempo.

xmpDM:instrument Text External The musical instrument.

xmpDM:introTime Time Internal The duration of lead time for
queuing music.

xmpDM:outCue Time Internal The time at which to fade out.

xmpDM:relativeTimestamp Time Internal The start time of the media inside
the audio project.

xmpDM:loop Boolean Internal When true, the clip can be looped
seemlessly.

xmpDM:numberOfBeats Real Internal The number of beats.

Property Value Type
Catego
ry Description

52 June 2005 XMP Specification

XMP Schemas
XMP Dynamic Media Schema

4

xmpDM:key closed Choice of
Text

Internal The audio’s musical key. One of:
C
C#
D
D#
E
F
F#
G
G#
A
A#
B

xmpDM:stretchMode closed Choice of
Text

Internal The audio stretch mode. One of:
Fixed length
Time-Scale
Resample
Beat Splice
Hybrid

xmpDM:timeScaleParams timeScaleStretch Internal Additional parameters for Time-
Scale stretch mode.

xmpDM:resampleParams resampleStretch Internal Additional parameters for Resample
stretch mode.

xmpDM:beatSpliceParams beatSpliceStretch Internal Additional parameters for Beat
Splice stretch mode.

xmpDM:timeSignature closed Choice of
Text

Internal The time signature of the music.
One of:
2/4
3/4
4/4
5/4
7/4
6/8
9/8
12/8
other

xmpDM:scaleType closed Choice of
Text

Internal The musical scale used in the music.
One of:
Major
Minor,
Both
Neither

Neither is most often used for
instruments with no associated
scale, such as drums.

Property Value Type
Catego
ry Description

XMP Specification June 2005 53

XMP Schemas
Adobe PDF Schema

4

Adobe PDF Schema

This schema specifies properties used with Adobe PDF documents.

● The schema namespace URI is http://ns.adobe.com/pdf/1.3/

● The preferred schema namespace prefix is pdf

Property Value Type Category Description

pdf:Keywords Text External Keywords.

pdf:PDFVersion Text Internal The PDF file version (for example: 1.0, 1.3, and so on).

pdf:Producer AgentName Internal The name of the tool that created the PDF document.

54 June 2005 XMP Specification

XMP Schemas
Photoshop Schema

4

Photoshop Schema

This schema specifies properties used by Adobe Photoshop.

● The schema namespace URI is http://ns.adobe.com/photoshop/1.0/

● The preferred schema namespace prefix is photoshop

Property Value Type Category Description

photoshop:AuthorsPosition Text External By-line title.

photoshop:CaptionWriter ProperName External Writer/editor.

photoshop:Category Text External Category. Limited to 3 7-bit ASCII characters.

photoshop:City Text External City.

photoshop:Country Text External Country/primary location.

photoshop:Credit Text External Credit.

photoshop:DateCreated Date External The date the intellectual content of the document
was created (rather than the creation date of the
physical representation), following IIM conventions.
For example, a photo taken during the American
Civil War would have a creation date during that
epoch (1861-1865) rather than the date the photo
was digitized for archiving.

photoshop:Headline Text External Headline.

photoshop:Instructions Text External Special instructions.

photoshop:Source Text External Source.

photoshop:State Text External Province/state.

photoshop:
SupplementalCategories

bag Text External Supplemental category.

photoshop:
TransmissionReference

Text External Original transmission reference.

photoshop:Urgency Integer External Urgency. Valid range is 1-8.

XMP Specification June 2005 55

XMP Schemas
Camera Raw Schema

4

Camera Raw Schema

This schema specifies settings associated with image files produced in camera raw mode.

● The schema namespace URI is http://ns.adobe.com/camera-raw-
settings/1.0/

● The preferred schema namespace prefix is crs

Property Value Type Category Description

crs:AutoBrightness Boolean External When true, "Brightness" is automatically adjusted.

crs:AutoContrast Boolean External When true, "Contrast" is automatically adjusted.

crs:AutoExposure Boolean External When true, "Exposure" is automatically adjusted.

crs:AutoShadows Boolean External When true,"Shadows" is automatically adjusted.

crs:BlueHue Integer External "Blue Hue" setting. Range -100 to 100.

crs:BlueSaturation Integer External "Blue Saturation" setting. Range -100 to +100.

crs:Brightness Integer External "Brightness" setting. Range 0 to +150.

crs:CameraProfile Text External "Camera Profile" setting.

crs:ChromaticAberrationB Integer External "Chomatic Aberration, Fix Blue/Yellow Fringe"
setting. Range -100 to +100.

crs:ChromaticAberrationR Integer External "Chomatic Aberration, Fix Red/Cyan Fringe"
setting. Range -100 to +100.

crs:ColorNoiseReduction Integer External "Color Noise Reducton" setting. Range 0 to +100.

crs:Contrast Integer External "Contrast" setting. Range -50 to +100.

crs:CropTop Real External When HasCrop is true, top of crop rectangle

crs:CropLeft Real External When HasCrop is true, left of crop rectangle.

crs:CropBottom Real External When HasCrop is true, bottom of crop rectangle.

crs:CropRight Real External When HasCrop is true, right of crop rectangle.

crs:CropAngle Real External When HasCrop is true, angle of crop rectangle.

crs:CropWidth Real External Width of resulting cropped image in CropUnits
units.

crs:CropHeight Real External Height of resulting cropped image in CropUnits
units.

56 June 2005 XMP Specification

XMP Schemas
Camera Raw Schema

4

crs:CropUnits Integer External Units for CropWidth and CropHeight. One of:
0=pixels
1=inches
2=cm

crs:Exposure Real External "Exposure" setting. Range -4.0 to +4.0.

crs:GreenHue Integer External "Green Hue" setting. Range -100 to +100.

crs:GreenSaturation Integer External "Green Saturation" setting. Range -100 to +100.

crs:HasCrop Boolean External When true, image has a cropping rectangle.

crs:HasSettings Boolean External When true, non-default camera raw settings.

crs:LuminanceSmoothing Integer External "Luminance Smoothing" setting. Range 0 to +100.

crs:RawFileName Text Internal File name fo raw file (not a complete path).

crs:RedHue Integer External "Red Hue" setting. Range -100 to +100.

crs:RedSaturation Integer External "Red Saturation" setting. Range -100 to +100.

crs:Saturation Integer External "Saturation" setting. Range -100 to +100.

crs:Shadows Integer External "Shadows" setting. Range 0 to +100.

crs:ShadowTint Integer External "Shadow Tint" setting. Range -100 to +100.

crs:Sharpness Integer External "Sharpness" setting. Range 0 to +100.

crs:Temperature Integer External "Temperature" setting. Range 2000 to 50000.

crs:Tint Integer External "Tint" setting. Range -150 to +150.

crs:ToneCurve Seq of points
(Integer,
Integer)

External Array of points (Integer, Integer) defining a “Tone
Curve.”

crs:ToneCurveName Choice Text Internal The name of the Tone Curve described by
ToneCurve. One of:
Linear
Medium Contrast
Strong Contrast
Custom

or a user-defined preset name

crs:Version Text Internal Version of Camera Raw plugin.

crs:VignetteAmount Integer External "Vignetting Amount" setting. Range -100 to +100.

crs:VignetteMidpoint Integer External "Vignetting Midpoint" setting. Range 0 to +100.

Property Value Type Category Description

XMP Specification June 2005 57

XMP Schemas
Camera Raw Schema

4

crs:WhiteBalance Closed Choice
Text

External "White Balance" setting. One of:
As Shot
Auto
Daylight
Cloudy
Shade
Tungsten
Fluorescent
Flash
Custom

Property Value Type Category Description

58 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

EXIF Schemas

EXIF is a metadata standard for image files, used widely by digital cameras. The EXIF 2.2
specification can be found at http://www.exif.org/specifications.html.

There are two XMP schemas that correspond to parts of the EXIF 2.2 specification, described
in the following sections:

● “EXIF Schema for TIFF Properties” on page 58

● “EXIF Schema for EXIF-specific Properties” on page 60

● “EXIF Schema for Additional EXIF Properties” on page 69 describes a namespace that
defines additional properties for the equipment used to produce EXIF data.

The property descriptions assume that the reader has some familiarity with EXIF metadata.
The XMP property names are identical to the names used within the EXIF specification; more
complete descriptions of the properties can be found in the specification.

The following sections provide further information:

● “Data Representation and Conversion” on page 69 describes guidelines for converting
between the XMP and EXIF formats, with examples.

● “EXIF Schema Value Types” on page 83 describes EXIF-specific value types.

NOTE: XMP properties of type Date include fractional seconds; therefore EXIF properties for
fractional seconds (SubSecTime, SubSecTimeOriginal,
SubSecTimeDigitized) are included in the “main XMP property”.

EXIF Schema for TIFF Properties

The following table lists the properties for TIFF-derived data. Only those TIFF properties that
are mentioned in the EXIF 2.2 specification are included here.

● The schema name is http://ns.adobe.com/tiff/1.0/

● The preferred schema namespace prefix is tiff

Property Value Type Category Description

tiff:ImageWidth Integer Internal TIFF tag 256, 0x100. Image width in pixels.

tiff:ImageLength Integer Internal TIFF tag 257, 0x101. Image height in pixels.

tiff:BitsPerSample seq Integer Internal TIFF tag 258, 0x102. Number of bits per component in
each channel.

tiff:Compression Closed Choice
of Integer

Internal TIFF tag 259, 0x103. Compression scheme:1 =
uncompressed; 6 = JPEG.

http://www.exif.org/specifications.html

XMP Specification June 2005 59

XMP Schemas
EXIF Schemas

4

tiff:
PhotometricInterpretation

Closed Choice
of Integer

Internal TIFF tag 262, 0x106. Pixel Composition: 2 = RGB; 6 =
YCbCr.

tiff:Orientation Closed Choice
of Integer

Internal TIFF tag 274, 0x112. Orientation:
1 = 0th row at top, 0th column at left
2 = 0th row at top, 0th column at right
3 = 0th row at bottom, 0th column at right
4 = 0th row at bottom, 0th column at left
5 = 0th row at left, 0th column at top
6 = 0th row at right, 0th column at top
7 = 0th row at right, 0th column at bottom
8 = 0th row at left, 0th column at bottom

tiff:SamplesPerPixel Integer Internal TIFF tag 277, 0x115. Number of components per pixel.

tiff:PlanarConfiguration Closed Choice
of Integer

Internal TIFF tag 284, 0x11C. Data layout:1 = chunky; 2 =
planar.

tiff:YCbCrSubSampling Closed Choice
of seq Integer

Internal TIFF tag 530, 0x212. Sampling ratio of chrominance
components:

[2, 1] = YCbCr4:2:2
[2, 2] = YCbCr4:2:0

tiff:YCbCrPositioning Closed Choice
of Integer

Internal TIFF tag 531, 0x213. Position of chrominance vs.
luminance components: 1 = centered; 2 = co-sited.

tiff:XResolution Rational Internal TIFF tag 282, 0x11A. Horizontal resolution in pixels
per unit.

tiff:YResolution Rational Internal TIFF tag 283, 0x11B. Vertical resolution in pixels per
unit.

tiff:ResolutionUnit Closed Choice
of Integer

Internal TIFF tag 296, 0x128. Unit used for XResolution and
YResolution. Value is one of: 2 = inches; 3 =
centimeters.

tiff:TransferFunction seq Integer Internal TIFF tag 301, 0x12D. Transfer function for image
described in tabular style with 3 * 256 entries.

tiff:WhitePoint seq Rational Internal TIFF tag 318, 0x13E. Chromaticity of white point.

tiff:PrimaryChromaticities seq Rational Internal TIFF tag 319, 0x13F. Chromaticity of the three primary
colors.

tiff:YCbCrCoefficients seq Rational Internal TIFF tag 529, 0x211. Matrix coefficients for RGB to
YCbCr transformation.

tiff:ReferenceBlackWhite seq Rational Internal TIFF tag 532, 0x214. Reference black and white point
values.

Property Value Type Category Description

60 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

EXIF Schema for EXIF-specific Properties

The following table lists the properties defined solely by EXIF.

NOTE: A number of EXIF 2.2 properties are not included in XMP. These are generally
properties that relate directly to the image stream, or that are of little use without access
to the image stream. A general XMP principle is that XMP metadata should have value
in and of itself, separate from the primary file content. The omitted properties include:
StripOffsets, RowsPerStrip, StripByteCounts, JPEGInterchangeFormat, and
JPEGInterchangeFormatLength

NOTE: Properties beginning with “GPS” are GPS properties that are also used by DIG-35 and
are part of the JPEG-2000 standard.

● The schema name is http://ns.adobe.com/exif/1.0/

tiff:DateTime Date Internal TIFF tag 306, 0x132 (primary) and EXIF tag 37520,
0x9290 (subseconds). Date and time of image creation
(no time zone in EXIF), stored in ISO 8601 format, not
the original EXIF format. This property includes the
value for the EXIF SubSecTime attribute.

NOTE: This property is stored in XMP as
xmp:ModifyDate.

tiff:ImageDescription Lang Alt External TIFF tag 270, 0x10E. Description of the image.

NOTE: This property is stored in XMP as
dc:description.

tiff:Make ProperName Internal TIFF tag 271, 0x10F. Manufacturer of recording
equipment.

tiff:Model ProperName Internal TIFF tag 272, 0x110. Model name or number of
equipment.

tiff:Software AgentName Internal TIFF tag 305, 0x131. Software or firmware used to
generate image.

NOTE: This property is stored in XMP as
xmp:CreatorTool.

tiff:Artist ProperName External TIFF tag 315, 0x13B. Camera owner, photographer or
image creator.

NOTE: This property is stored in XMP as the first item
in the dc:creator array.

tiff:Copyright Lang Alt External TIFF tag 33432, 0x8298. Copyright information.

NOTE: This property is stored in XMP as dc:rights.

Property Value Type Category Description

XMP Specification June 2005 61

XMP Schemas
EXIF Schemas

4

● The preferred schema namespace prefix is exif

Property Value Type Category Description

exif:ExifVersion Closed Choice
of Text

Internal EXIF tag 36864, 0x9000. EXIF version number.

exif:FlashpixVersion Closed Choice
of Text

Internal EXIF tag 40960, 0xA000. Version of FlashPix.

exif:ColorSpace Closed Choice
of Integer

Internal EXIF tag 40961, 0xA001. Color space
information:

1 = sRGB
65535 = uncalibrated

exif:ComponentsConfiguration Closed Choice
of seq Integer

Internal EXIF tag 37121, 0x9101. Configuration of
components in data: 4 5 6 0 (if RGB compressed
data), 1 2 3 0 (other cases).

0 = does not exist
1 = Y
2 = Cb
3 = Cr
4 = R
5 = G
6 = B

exif:CompressedBitsPerPixel Rational Internal EXIF tag 37122, 0x9102. Compression mode
used for a compressed image is indicated in unit
bits per pixel.

exif:PixelXDimension Integer Internal EXIF tag 40962, 0xA002. Valid image width, in
pixels.

exif:PixelYDimension Integer Internal EXIF tag 40963, 0xA003. Valid image height, in
pixels.

exif:UserComment Lang Alt External EXIF tag 37510, 0x9286. Comments from user.

exif:RelatedSoundFile Text Internal EXIF tag 40964, 0xA004. An “8.3” file name
for the related sound file.

exif:DateTimeOriginal Date Internal EXIF tags 36867, 0x9003 (primary) and 37521,
0x9291 (subseconds). Date and time when
original image was generated, in ISO 8601
format. Includes the EXIF
SubSecTimeOriginal data.

62 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

exif:DateTimeDigitized Date Internal EXIF tag 36868, 0x9004 (primary) and 37522,
0x9292 (subseconds). Date and time when
image was stored as digital data, can be the
same as DateTimeOriginal if originally
stored in digital form. Stored in ISO 8601
format. Includes the EXIF
SubSecTimeDigitized data.

exif:ExposureTime Rational Internal EXIF tag 33434, 0x829A. Exposure time in
seconds.

exif:FNumber Rational Internal EXIF tag 33437, 0x829D. F number.

exif:ExposureProgram Closed Choice
of Integer

Internal EXIF tag 34850, 0x8822. Class of program used
for exposure:

0 = not defined
1 = Manual
2 = Normal program
3 = Aperture priority
4 = Shutter priority
5 = Creative program
6 = Action program
7 = Portrait mode
8 = Landscape mode

exif:SpectralSensitivity Text Internal EXIF tag 34852, 0x8824. Spectral sensitivity of
each channel.

exif:ISOSpeedRatings seq Integer Internal EXIF tag 34855, 0x8827. ISO Speed and ISO
Latitude of the input device as specified in
ISO 12232.

exif:OECF OECF/SFR Internal EXIF tag 34856, 0x8828. Opto-Electoric
Conversion Function as specified in ISO 14524.

exif:ShutterSpeedValue Rational Internal EXIF tag 37377, 0x9201. Shutter speed, unit is
APEX. See Annex C of the EXIF specification.

exif:ApertureValue Rational Internal EXIF tag 37378, 0x9202. Lens aperture, unit is
APEX.

exif:BrightnessValue Rational Internal EXIF tag 37379, 0x9203. Brightness, unit is
APEX.

exif:ExposureBiasValue Rational Internal EXIF tag 37380, 0x9204. Exposure bias, unit is
APEX.

exif:MaxApertureValue Rational Internal EXIF tag 37381, 0x9205. Smallest F number of
lens, in APEX.

Property Value Type Category Description

XMP Specification June 2005 63

XMP Schemas
EXIF Schemas

4

exif:SubjectDistance Rational Internal EXIF tag 37382, 0x9206. Distance to subject, in
meters.

exif:MeteringMode Closed Choice
of Integer

Internal EXIF tag 37383, 0x9207. Metering mode:
0 = unknown
1 = Average
2 = CenterWeightedAverage
3 = Spot
4 = MultiSpot
5 = Pattern
6 = Partial
255 = other

exif:LightSource Closed Choice
of Integer

Internal EXIF tag 37384, 0x9208. EXIF tag , 0x. Light
source:

0 = unknown
1 = Daylight
2 = Fluorescent
3 = Tungsten
4 = Flash
9 = Fine weather
10 = Cloudy weather
11 = Shade
12 = Daylight fluorescent

(D 5700 – 7100K)
13 = Day white fluorescent

(N 4600 – 5400K)
14 = Cool white fluorescent

(W 3900 – 4500K)
15 = White fluorescent

(WW 3200 – 3700K)
17 = Standard light A
18 = Standard light B
19 = Standard light C
20 = D55
21 = D65
22 = D75
23 = D50
24 = ISO studio tungsten
255 = other

exif:Flash Flash Internal EXIF tag 37385, 0x9209. Strobe light (flash)
source data.

Property Value Type Category Description

64 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

exif:FocalLength Rational Internal EXIF tag 37386, 0x920A. Focal length of the
lens, in millimeters.

exif:SubjectArea seq Integer Internal EXIF tag 37396, 0x9214. The location and area
of the main subject in the overall scene.

exif:FlashEnergy Rational Internal EXIF tag 41483, 0xA20B. Strobe energy during
image capture.

exif:
SpatialFrequencyResponse

OECF/SFR Internal EXIF tag 41484, 0xA20C. Input device spatial
frequency table and SFR values as specified in
ISO 12233.

exif:FocalPlaneXResolution Rational Internal EXIF tag 41486, 0xA20E. Horizontal focal
resolution, measured pixels per unit.

exif:FocalPlaneYResolution Rational Internal EXIF tag 41487, 0xA20F. Vertical focal
resolution, measured in pixels per unit.

exif:FocalPlaneResolutionUnit Closed Choice
of Integer

Internal EXIF tag 41488, 0xA210. Unit used for
FocalPlaneXResolution and
FocalPlaneYResolution.

2 = inches
3 = centimeters

exif:SubjectLocation seq Integer Internal EXIF tag 41492, 0xA214. Location of the main
subject of the scene. The first value is the
horizontal pixel and the second value is the
vertical pixel at which the main subject appears.

exif:ExposureIndex Rational Internal EXIF tag 41493, 0xA215. Exposure index of
input device.

exif:SensingMethod Closed Choice
of Integer

Internal EXIF tag 41495, 0xA217. Image sensor type on
input device:

1 = Not defined
2 = One-chip color area sensor
3 = Two-chip color area sensor
4 = Three-chip color area sensor
5 = Color sequential area sensor
7 = Trilinear sensor
8 = Color sequential linear sensor

exif:FileSource Closed Choice
of Integer

Internal EXIF tag 41728, 0xA300. Indicates image
source: 3 (DSC) is the only choice.

exif:SceneType Closed Choice
of Integer

Internal EXIF tag 41729, 0xA301. Indicates the type of
scene: 1 (directly photographed image) is the
only choice.

Property Value Type Category Description

XMP Specification June 2005 65

XMP Schemas
EXIF Schemas

4

exif:CFAPattern CFAPattern Internal EXIF tag 41730, 0xA302. Color filter array
geometric pattern of the image sense.

exif:CustomRendered Closed Choice
of Integer

Internal EXIF tag 41985, 0xA401. Indicates the use of
special processing on image data:

0 = Normal process
1 = Custom process

exif:ExposureMode Closed Choice
of Integer

Internal EXIF tag 41986, 0xA402. Indicates the
exposure mode set when the image was shot:

0 = Auto exposure
1 = Manual exposure
2 = Auto bracket

exif:WhiteBalance Closed Choice
of Integer

Internal EXIF tag 41987, 0xA403. Indicates the white
balance mode set when the image was shot:

0 = Auto white balance
1 = Manual white balance

exif:DigitalZoomRatio Rational Internal EXIF tag 41988, 0xA404. Indicates the digital
zoom ratio when the image was shot.

exif:FocalLengthIn35mmFilm Integer Internal EXIF tag 41989, 0xA405. Indicates the
equivalent focal length assuming a 35mm film
camera, in mm. A value of 0 means the focal
length is unknown. Note that this tag differs
from the FocalLength tag.

exif:SceneCaptureType Closed Choice
of Integer

Internal EXIF tag 41990, 0xA406. Indicates the type of
scene that was shot:

0 = Standard
1 = Landscape
2 = Portrait
3 = Night scene

exif:GainControl Closed Choice
of Integer

Internal EXIF tag 41991, 0xA407. Indicates the degree
of overall image gain adjustment:

0 = None
1 = Low gain up
2 = High gain up
3 = Low gain down
4 = High gain down

Property Value Type Category Description

66 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

exif:Contrast Closed Choice
of Integer

Internal EXIF tag 41992, 0xA408. Indicates the
direction of contrast processing applied by the
camera:

0 = Normal
1 = Soft
2 = Hard

exif:Saturation Closed Choice
of Integer

Internal EXIF tag 41993, 0xA409. Indicates the
direction of saturation processing applied by the
camera:

0 = Normal
1 = Low saturation
2 = High saturation

exif:Sharpness Closed Choice
of Integer

Internal EXIF tag 41994, 0xA40A. Indicates the
direction of sharpness processing applied by the
camera:

0 = Normal
1 = Soft
2 = Hard

exif:DeviceSettingDescription DeviceSettings Internal EXIF tag 41995, 0xA40B. Indicates information
on the picture-taking conditions of a particular
camera model.

exif:SubjectDistanceRange Closed Choice
of Integer

Internal EXIF tag 41996, 0xA40C. Indicates the distance
to the subject:

0 = Unknown
1 = Macro
2 = Close view
3 = Distant view

exif:ImageUniqueID Text Internal EXIF tag 42016, 0xA420. An identifier assigned
uniquely to each image. It is recorded as a 32
character ASCII string, equivalent to
hexadecimal notation and 128-bit fixed length.

exif:GPSVersionID Text Internal GPS tag 0, 0x00. A decimal encoding of each of
the four EXIF bytes with period separators. The
current value is “2.0.0.0”.

exif:GPSLatitude GPSCoordinate Internal GPS tag 2, 0x02 (position) and 1, 0x01
(North/South). Indicates latitude.

exif:GPSLongitude GPSCoordinate Internal GPS tag 4, 0x04 (position) and 3, 0x03
(East/West). Indicates longitude.

Property Value Type Category Description

XMP Specification June 2005 67

XMP Schemas
EXIF Schemas

4

exif:GPSAltitudeRef Closed Choice
of Integer

Internal GPS tag 5, 0x5. Indicates whether the altitude is
above or below sea level:

0 = Above sea level
1 = Below sea level

exif:GPSAltitude Rational Internal GPS tag 6, 0x06. Indicates altitude in meters.

exif:GPSTimeStamp Date Internal GPS tag 29 (date), 0x1D, and, and GPS tag 7
(time), 0x07. Time stamp of GPS data, in
Coordinated Universal Time.

NOTE: The GPSDateStamp tag is new in EXIF
2.2. The GPS timestamp in EXIF 2.1
does not include a date. If not present,
the date component for the XMP should
be taken from

exif:DateTimeOriginal, or if that is
also lacking from
exif:DateTimeDigitized. If no date is
available, do not write
exif:GPSTimeStamp to XMP.

exif:GPSSatellites Text Internal GPS tag 8, 0x08. Satellite information, format is
unspecified.

exif:GPSStatus Closed Choice
of Text

Internal GPS tag 9, 0x09. Status of GPS receiver at
image creation time:

A = measurement in progress
V = measurement is interoperability

exif:GPSMeasureMode Text Internal GPS tag 10, 0x0A. GPS measurement mode,
Text type:

2 = two-dimensional measurement
3 = three-dimensional measurement

exif:GPSDOP Rational Internal GPS tag 11, 0x0B. Degree of precision for GPS
data.

exif:GPSSpeedRef Closed Choice
of Text

Internal GPS tag 12, 0x0C. Units used to speed
measurement:

K = kilometers per hour
M = miles per hour
N = knots

exif:GPSSpeed Rational Internal GPS tag 13, 0x0D. Speed of GPS receiver
movement.

Property Value Type Category Description

68 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

exif:GPSTrackRef Closed Choice
of Text

Internal GPS tag 14, 0x0E. Reference for movement
direction:

T = true direction
M = magnetic direction

exif:GPSTrack Rational Internal GPS tag 15, 0x0F. Direction of GPS movement,
values range from 0 to 359.99.

exif:GPSImgDirectionRef Closed Choice
of Text

Internal GPS tag 16, 0x10. Reference for movement
direction:

T = true direction
M = magnetic direction

exif:GPSImgDirection Rational Internal GPS tag 17, 0x11. Direction of image when
captured, values range from 0 to 359.99.

exif:GPSMapDatum Text Internal GPS tag 18, 0x12. Geodetic survey data.

exif:GPSDestLatitude GPSCoordinate Internal GPS tag 20, 0x14 (position) and 19, 0x13
(North/South). Indicates destination latitude.

exif:GPSDestLongitude GPSCoordinate Internal GPS tag 22, 0x16 (position) and 21, 0x15
(East/West). Indicates destination longitude.

exif:GPSDestBearingRef Closed Choice
of Text

Internal GPS tag 23, 0x17. Reference for movement
direction:

T = true direction
M = magnetic direction

exif:GPSDestBearing Rational Internal GPS tag 24, 0x18. Destination bearing, values
from 0 to 359.99.

exif:GPSDestDistanceRef Closed Choice
of Text

Internal GPS tag 25, 0x19. Units used for speed
measurement:

K = kilometers
M = miles
N = knots

exif:GPSDestDistance Rational Internal GPS tag 26, 0x1A. Distance to destination.

exif:GPSProcessingMethod Text Internal GPS tag 27, 0x1B. A character string recording
the name of the method used for location
finding.

exif:GPSAreaInformation Text Internal GPS tag 28, 0x1C. A character string recording
the name of the GPS area.

Property Value Type Category Description

XMP Specification June 2005 69

XMP Schemas
EXIF Schemas

4

EXIF Schema for Additional EXIF Properties

The following table lists additional properties that describe the equipment used to produce
EXIF data.

● The schema name is http://ns.adobe.com/exif/1.0/aux/

● The preferred schema namespace prefix is aux

Data Representation and Conversion

This section describes the mapping from the native EXIF 2.2 metadata format to the XMP
format. It explains how to do the conversion without losing significant data, and describes the
resulting XMP representation.

NOTE: If a particular tag is omitted from an EXIF file, the corresponding XMP property
must also be omitted. An XMP property must not be created based on the default
value of a missing EXIF tag.

The EXIF to XMP type mappings are designed to be lossless in most cases. The main issues
are for EXIF text values. When converting from XMP, integers that are specified optionally as
short or long in EXIF should be represented as short if the value is in the range −32768 to
+32767, otherwise they should be long.

EXIF Text

EXIF text values are a sequence of ASCII characters with a null terminator; XMP text values
are Unicode characters in UTF-8 with no null terminator. When converting EXIF to XMP, the
null terminator is dropped; the remaining ASCII codes are legitimate UTF-8 values. When
converting from XMP to EXIF, non-ASCII characters are escaped (using URL escaping as
specified in http://www.w3.org/Addressing/URL/4_Recommentations.html); ASCII

exif:GPSDifferential Closed choice
of Integer

Internal GPS tag 30, 0x1E. Indicates whether differential
correction is applied to the GPS receiver:

0 = Without correction
1 = Correction applied

Property Value Type Category Description

aux:Lens Text Internal A description of the lens used to take the photograph.
For example, “70-200 mm f/2.8-4.0”.

aux:SerialNumber Text Internal The serial number of the camera or camera body used to
take the photograph.

Property Value Type Category Description

http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org/Addressing/URL/4_Recommentations.html

70 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

characters in the range of 0 through 127 are not escaped (for example, spaces); and a null
terminator is added.

XMP text values can be localized. For properties of type Lang Alt, an array of localized text
values can be supplied. When converting from EXIF to XMP, the value supplied by the EXIF
metadata should be written to the default entry ([@xml:lang='x-default']). When
converting from XMP to EXIF, the default entry should be used to supply the EXIF metadata.

EXIF Dates

All date/time values are stored in XMP using ISO 8601 format. This is a combined date and
time, with fractional seconds, and a time zone designation. The binary EXIF values generally
separate the fractional seconds. EXIF 2.1 lacks time zone information; this has been partially
added in EXIF 2.2. When converting to XMP, the fractional seconds should be included. If no
time zone is contained in the EXIF, convert to XMP assuming a local time.

XMP Specification June 2005 71

XMP Schemas
EXIF Schemas

4

Example

The following is an example of EXIF 2.2 metadata and the corresponding XMP metadata as it
might be converted from the EXIF data.

The EXIF data:

IFD 0 [1]
Make = "Canon"
Model = "Canon PowerShot S300"
Orientation = "1"
XResolution = "180/1" (180.00)
YResolution = "180/1" (180.00)
ResolutionUnit = "2"
DateTime = "2001:07:25 20:18:27"
YCbCrPositioning = "1"
ExposureTime = "1/60" (0.0167)
FNumber = "27/10" (2.70)
ExifVersion = "30 32 31 30"
DateTimeOriginal = "2001:07:25 20:18:27"
DateTimeDigitized = "2001:07:25 20:18:27"
ComponentsConfiguration = "1 2 3 0"
CompressedBitsPerPixel = "3/1" (3.00)
ShutterSpeedValue = "189/32" (5.91)
ApertureValue = "93/32" (2.91)
ExposureBiasValue = "0/3" (0.00)
MaxApertureValue = "187820/65536" (2.8659)
SubjectDistance = "913/1000" (0.9130)
MeteringMode = "5"
Flash = "0x01"
FocalLength = "173/32" (5.41)

72 June 2005 XMP Specification

XMP Schemas
EXIF Schemas

4

The XMP Metadata:

NOTE: This example uses the RDF shorthand notation of representing simple properties as
XML attributes instead of XML elements.

<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<rdf:Description about='' xmlns:tiff='http://ns.adobe.com/tiff/1.0'

tiff:Make='Canon'
tiff:Model='Canon PowerShot S300'
tiff:Orientation='1'
tiff:XResolution='180/1'
tiff:YResolution='180/1'
tiff:ResolutionUnit='2'
tiff:DateTime='2001-07-25T20:18:27-07:00'
tiff:YCbCrPositioning='1'>

</rdf:Description>

<rdf:Description about='' xmlns:exif='http://ns.adobe.com/exif/1.0'
exif:ExposureTime='1/60'
exif:FNumber='27/10'
exif:ExifVersion='0210'
exif:DateTimeOriginal='2001-07-25T20:18:27-07:00'
exif:DateTimeDigitized='2001-07-25T20:18:27-07:00'
exif:CompressedBitsPerPixel='3/1'
exif:ShutterSpeedValue='189/32'
exif:ApertureValue='93/32'
exif:ExposureBiasValue='0/3’
exif:MaxApertureValue='187820/65536'
exif:SubjectDistance='913/1000'
exif:MeteringMode='5'
exif:Flash='1'
exif:FocalLength='173/32'>
<exif:ComponentsConfiguration>

<rdf:Seq>
<rdf:li>1</rdf:li>
<rdf:li>2</rdf:li>
<rdf:li>3</rdf:li>
<rdf:li>0</rdf:li>

</rdf:Seq>
</exif:ComponentsConfiguration>

</rdf:Description>
</rdf:RDF>

XMP Specification June 2005 73

XMP Schemas
Property Value Types

4

Property Value Types

The following tables list the value types used in the XMP schemas.

Basic Value Types

Boolean

Allowed values are True or False (the strings should be spelled exactly as shown).

Choice

A value chosen from a vocabulary of values, and represented by a string. Vocabularies provide
a means of specifying a limited but extensible set of values for a property. The metadata
schema can indicate whether the set of legal values is fixed or can be extended.

A choice can be open or closed:

● An open choice has one or more lists of preferred values, but other values can be freely
used.

● A closed choice only allows values from the defined lists.

If a property value is to have a very definite meaning and all users of that property must know
the exact meaning, use a closed choice vocabulary. If there are well-defined sets of values
whose meanings are known, but additional values might be used without causing problems,
use an open choice.

Colorant

A structure containing the characteristics of a colorant (swatch) used in a document.

● The field namespace URI is http://ns.adobe.com/xap/1.0/g/

● The preferred field namespace prefix is xapG

Field Name Value Type Description

xapG:swatchName Text Name of the swatch.

xapG:mode closed Choice The color space in which the color is defined. One of:
CMYK, RGB, LAB. Library colors are represented in
the color space for which they are defined.

xapG:type closed Choice The type of color, one of PROCESS or SPOT.

xapG:cyan Real Cyan value when the mode is CMYK. Range 0-100.

xapG:magenta Real Magenta value when the mode is CMYK. Range 0-100.

xapG:yellow Real Yellow value when the mode is CMYK. Range 0-100.

74 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

Date

A date-time value which is represented using a subset of ISO RFC 8601 formatting, as
described in http://www.w3.org/TR/NOTE-datetime. The following formats are supported:

YYYY
YYYY-MM
YYYY-MM-DD
YYYY-MM-DDThh:mmTZD
YYYY-MM-DDThh:mm:ssTZD
YYYY-MM-DDThh:mm:ss.sTZD
YYYY = four-digit year

MM = two-digit month (01=January)
DD = two-digit day of month (01 through 31)
hh = two digits of hour (00 through 23)
mm = two digits of minute (00 through 59)
ss = two digits of second (00 through 59)
s = one or more digits representing a decimal fraction of a second
TZD = time zone designator (Z or +hh:mm or -hh:mm)

Dimensions

A structure containing dimensions for a drawn object.

● The field namespace URI is http://ns.adobe.com/xap/1.0/sType/Dimensions#

● The preferred field namespace prefix is stDim

xapG:black Real Black value when the mode is CMYK. Range 0-100.

xapG:red Integer Red value when the mode is RGB. Range 0-255.

xapG:green Integer Green value when the mode is RGB. Range 0-255.

xapG:blue Integer Blue value when the mode is RGB. Range 0-255.

xapG:L Real L value when the mode is LAB. Range 0-100.

xapG:A Integer A value when the mode is LAB. Range -128 to 127.

xapG:B Integer B value when the mode is LAB. Range -128 to 127.

Field Name Value Type Description

w Real Width

h Real Height

unit open Choice Units. For example: inch, mm, pixel, pica, point

Field Name Value Type Description

http://www.w3.org/TR/NOTE-datetime

XMP Specification June 2005 75

XMP Schemas
Property Value Types

4

Font

A structure containing the characteristics of a font used in a document.

● The field namespace URI is http:ns.adobe.com/xap/1.0/sType/Font#

● The preferred field namespace prefix is stFnt

Integer

A signed or unsigned numeric string used as an integer number representation. The string
consists of an arbitrary length decimal numeric string with an optional leading “+” or “–” sign.

Lang Alt

A language alternative (see “Language Alternatives” on page 18), which is an array of type
“alt Text” that has a language property qualifier.

Field Name Value Type Description

stFnt:fontName Text Postscript name of the font.

stFnt:fontFamily Text The font family name.

stFnt:fontFace Text The font face name.

stFnt:fontType open Choice The font type, such as TrueType, Type 1, Open Type, and
so on.

stFnt:versionString String The version string:
/version for Type1 fonts
nameId 5 for Apple True Type and OpenType
/CIDFontVersion for CID fonts
The empty string for bitmap fonts

NOTE: CoolType allows two fonts with the same
Postscript name and different technologies to be
used at the same time, but not if they are from
different versions. So even without this data for a
given document you will have unique font data.
However, the version can tell you if the font has
changed metrics, glyph forms or other important
information. This is useful for comparing fonts in
two documents or fonts in a document to those in
your systeml.

stFnt:composite Boolean When true, this is a composite font.

stFnt:fontFileName String The font file name (not a complete path).

stFnt:childFontFiles Seq String The list of file names for the fonts that make up a
composite font.

76 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

Locale

A closed choice that identifies a language, with values from RFC 3066. See
http://www.ietf.org/rfc/rfc3066.txt.and http://www.w3.org/International/articles/language-
tags/.

MIMEType

An open Choice that identifies the file format. MIME types are defined in RFC 2046,
“Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types” at
http://www.ietf.org/rfc/rfc2046.txt.

ProperName

A name of a person or organization, represented as a Unicode text string.

Real

A numeric value of arbitrary precision. Consists of a decimal numeric string with an optional
single decimal point and an optional leading “+” or “–” sign.

It can optionally have the qualifier vQual:binRep, of type Text, which provides an alternate
binary representation for the number when an exact value is needed. The text is interpreted as:

std size,endian,hexadecimal_value

– std is the standard name ("IEEE754")
– size is S for 32-bit and D for 64-bit
– endian is L for little-endian, B for big-endian.

For example: "IEEE754D,L,3A4901F387D31108"

Text

A Unicode string.

Thumbnail

A thumbnail image for a file.

● The field namespace URI is http://ns.adobe.com/xap/1.0/g/img/

● The preferred field namespace prefix is xapGImg

Field Name Value Type Description

height Integer Height in pixels

width Integer Width in pixels

format Closed Choice The image encoding. Defined value: JPEG.

image Text The thumbnail image (pixel data only) converted to base 64
notation (according to section 6.8 of RFC 2045).

http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt

XMP Specification June 2005 77

XMP Schemas
Property Value Types

4

URI

An Internet Uniform Resource Identifier:a compact string of characters for identifying an
abstract or physical resource. See http://www.w3.org/Addressing/.

URL

An Internet Uniform Resource Locator. See http://www.w3.org/Addressing/. An informal term
(no longer used in technical specifications) associated with popular URI schemes: http, ftp,
mailto, and so on.

XPath

XML Path Language (XPath), for addressing parts of an XML document; see
http://www.w3.org/TR/xpath.

http://www.w3.org/Addressing/
http://www.w3.org/TR/xpath
http://www.w3.org/Tr/xpath
http://www.w3.org/Addressing/

78 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

Media Management Value Types

AgentName

The name of a program. The suggested convention is “vendor app version”—for example
“Adobe Acrobat Distiller 5.0”.

RenditionClass

The type of rendition, from a controlled vocabulary of standard names (an open Choice). A
series of colon-separated tokens and parameters, the first of which names the basic concept of
the rendition. Additional tokens are optional and provide specific characteristics of the
rendition. Defined values are:

ResourceEvent

A high level event that occured in the processing of this document.

● The field namespace URI is
http://ns.adobe.com/xap/1.0/sType/ResourceEvent#

● The preferred field namespace prefix is stEvt

default The master document; no additional tokens allowed.

thumbnail A simplified or reduced preview of a version. Additional tokens can provide
characteristics. The recommended order is: thumbnail:format:size:colorspace.
For example: thumbnail:jpeg, thumbnail:16x16, thumbnail:gif:8x8:bw.

screen Screen resolution or Web rendition.

proof A review proof.

draft A review rendition.

low-res A low resolution, full size stand-in.

Field Name Value Type Description

action open Choice The action that occurred. Defined values are: converted,
copied, created, cropped, edited, filtered, formatted,
version_updated, printed, published, managed, produced,
resized

New values should be verbs in the past tense.

instanceID URI The instance ID of the modified resource.

parameters Text Additional description of the action.

softwareAgent AgentName The software agent that performed the action.

when Date Optional timestamp of when the action occurred.

XMP Specification June 2005 79

XMP Schemas
Property Value Types

4

ResourceRef

A multiple part reference to a resource. Used to indicate prior versions, originals of renditions,
originals for derived documents, and so on. The fields present in any specific reference depend
on usage and on whether the referenced resource is managed. Except for instanceID, the fields
are all properties from the referenced resource’s xmpMM schema.

● The field namespace URI is
http://ns.adobe.com/xap/1.0/sType/ResourceRef#

● The preferred field namespace prefix is stRef

Version

Describes one version of a document.

● The field namespace URI is http://ns.adobe.com/xap/1.0/sType/Version#

● The preferred field namespace prefix is stVer

Field Name Value Type Description

instanceID URI The referenced resource’s instance ID.

documentID URI The referenced resource’s xmpMM:DocumentID.

versionID Text The referenced resource’s xmpMM:VersionID.

renditionClass RenditionClass The referenced resource’s xmpMM: RenditionClass.

renditionParams Text The referenced resource’s xmpMM: RenditionParams.

manager AgentName The referenced resource’s xmpMM:Manager.

managerVariant Text The referenced resource’s xmpMM: ManagerVariant.

manageTo URI The referenced resource’s xmpMM:ManageTo.

manageUI URI The referenced resource’s xmpMM:ManageUI.

Field Name Value Type Description

comments Text Comments concerning what was changed.

event ResourceEvent High level, formal description of what operation the user
performed.

modifyDate Date The date on which this version was checked in.

modifier ProperName The person who modified this version.

version Text The new version number.

80 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

Basic Job/Workflow Value Types

The following value type is used for the Basic Job/Workflow schema.

Job

Describes a job for a job-management system.

● The field namespace URI is http://ns.adobe.com/xap/1.0/sType/Job#

● The field namespace prefix is stJob

Video Media Value Types

The following value type is used for the XMP Dynamic Media Schema.

● The field namespace URI is http://ns.adobe.com/xmp/1.0/DynamicMedia/

● The preferred field namespace prefix is xmpDM

beatSpliceStretch

A set of parameters used when stretching audio using the Beat Splice stretch mode.

Field Name Value Type Description

name Text Informal name of job. This name is for user display and
informal systems.

id Text Unique ID for the job. This field is a reference into some
external job management system.

url URL A file URL referencing an external job management file.

Field Name Value Type Description

useFileBeatsMarker Boolean When true, the file beat markers are used for stretching.
Otherwise the rise and duration fields are used to
automatically locate the beats.

riseInDecibel Real The amount sound must increase in amplitude to detect a
beat.

riseInTimeDuration Time The duration of the sampling window used to measure the
audio increase for locating beats.

XMP Specification June 2005 81

XMP Schemas
Property Value Types

4

Marker

A marker type used to desribe an important location in a video sequence.

Media

A reference to a media asset. This is typically a local file, but can be anything that can be
specified with a URL. Contains information about usage in the parent media (typically a
sequence), and the associated media rights.

Field Name Value Type Description

startTime Time The timeline position of the marker.

duration Time The duration of the marker.

comment Text A descriptive comment.

name Text The name of the marker. This becomes, for example, the name
of a chapter in a DVD.

location URI The URL of the location to jump to.

target Text The part of the URL following the # sign. For example, in the
URL http://ns.adobe.com/xmp#Start, the value is Start.

type Closed Choice
of Text

The marker type. One of:
Chapter
Cue
Beat
Track
Index

Field Name Value Type Description

path URI The location of the media.

track Text An identifier for the track that contained this media. Could be a
track name or a number.

startTime Time The timeline position of the start of the media. This can be used
to locate the media with a track.

duration Time The duration of the media in the timeline.

managed Boolean When true, this is a rights-managed resource.

webStatement URI The location of a web page describing the owner and/or rights
statement for this resource.

82 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

ProjectLink

The type of a video file and path of the project that created it.

resampleStretch

A set of parameters used when stretching audio using the Resample stretch mode.

Time

A representation of a time value in seconds. This is similar to After Effect’s TDB, or
QuickTime’s representation of time. They each have a value, and the scale of the value. For
example, if the scale is the rational 1/25 (PAL 25fps), and the value is 50, the time is 2
seconds.

Field Name Value Type Description

type Closed Choice
of Text

The file type. One of:
movie

still

audio

custom

path URI Full path to the project that created this file.

Field Name Value Type Description

quality Closed Choice
of Text

One of:
High
Medium
Low

Field Name Value Type Description

value Integer The time value in the specified scale.

scale Rational The scale for the time value.
For NTSC, use 1001/30000, or the less accurate 100/2997.
For PAL, use 1/25.

XMP Specification June 2005 83

XMP Schemas
Property Value Types

4

Timecode

A time value in video.

timeScaleStretch

A set of parameters used when stretching audio using the Time-Scale stretch mode.

EXIF Schema Value Types

These types are used only within the EXIF schema.

Rational

To represent EXIF rational values in XMP, they must be converted to text. The recommended
approach is to use a value of type Text of the form: numerator; forward slash (‘/’);
denominator. For example, the value 2/3 becomes the text value "2/3" when converted to
XMP.

Field Name Value Type Description

timeValue Text A time value in the specified format. Time values use a colon
delimiter in all formats except 2997drop, which uses a
semicolon. The four fields indicate hours, minutes,
seconds, and frames: hh:mm:ss:ff
The actual duration in seconds depends on the format.

timeFormat Closed Choice
of Text

The format used in the timeValue. One of:
24Timecode
25Timecode
2997DropTimecode (semicolon delimiter)
2997NonDropTimecode
30Timecode
50Timecode
5994DropTimecode
5994NonDropTimecode
60Timecode
23976Timecode

Field Name Value Type Description

quality Closed Choice
of Text

One of:
High
Medium
Low

frameSize Real The splices per beat.

frameOverlapping
Percentage

Real The percentage of overlap between frames.

84 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

GPSCoordinate

A Text value in the form “DDD,MM,SSk” or “DDD,MM.mmk”, where:

– DDD is a number of degrees
– MM is a number of minutes
– SS is a number of seconds
– mm is a fraction of minutes
– k is a single character N, S, E, or W indicating a direction (north, south, east, west)

Leading zeros are not necesary for the for DDD, MM, and SS values. The DDD,MM.mmk form
should be used when any of the native EXIF component rational values has a denonimator
other than 1. There can be any number of fractional digits.

XMP Specification June 2005 85

XMP Schemas
Property Value Types

4

Flash

A structure describing the flash state.

● The field namespace URI is http://ns.adobe.com/exif/1.0/

● The preferred field namespace prefix is exif

OECF/SFR

A structure describing the OECF/SFR

● The field namespace URI is http://ns.adobe.com/exif/1.0/

● The preferred field namespace prefix is exif.

Field Value Type Description

Fired Boolean True if flash fired.

Return Closed
Choice

Whether strobe return is supported and if supported, detected. One
of:

0 = no strobe return detection
2 = strobe return light not detected
3 = strobe return light detected

Mode Closed
Choice

The flash mode. One of:
0 = unknown
1 = compulsory flash firing
2 = compulsory flash suppression
3 = auto mode

Function Boolean True if flash function is not present.

RedEyeMode Boolean True if red-eye reduction is supported.

Field Value Type Description

Columns Integer Number of columns, n.

Rows Integer Number of rows, m.

Names seq Text Column item names, n entries.

Values seq Rational OECF/SFR values, sequence should be, in order:
value [0,0]
…
value [n − 1, 0]
value [0, m − 1]
…
value [n − 1, m − 1]

86 June 2005 XMP Specification

XMP Schemas
Property Value Types

4

CFAPattern

A structure describing the CFA pattern

● The field namespace URI is http://ns.adobe.com/exif/1.0/

● The preferred field namespace prefix is exif.

DeviceSettings

A structure describing the device settings.

● The field namespace URI is http://ns.adobe.com/exif/1.0/

● The preferred field namespace prefix is exif

Field Value Type Description

Columns Integer Number of columns, n.

Rows Integer Number of rows, m.

Values seq Integer CFA values, sequence should be, in order:
value [0,0]
…
value [n − 1, 0]
value [0, m − 1]
…
value [n − 1, m − 1]

Field Value Type Description

Columns Integer Display columns.

Rows Integer Display rows.

Settings seq Text Camera settings, in order.

XMP Specification June 2005 87

XMP Schemas
Extensibility of Schemas

4

Extensibility of Schemas

This section discusses how to create new schemas and extend existing ones.

Creating Custom Schemas

The schemas defined in this document are core schemas that are believed to be applicable to a
wide variety of needs. If possible, it is always desirable to use properties from existing
schemas. However, XMP was designed to be easily extensible by the addition of custom
schemas. If your metadata needs are not already covered by the core schemas, you can define
and use your own schemas.

If you are considering creating a new namespace, observe the following:

● Avoid including properties that have the same semantics as properties in existing
namespaces.

● If your properties might be useful to others, try to collaborate in creating a common
namespace, to avoid having a multitude of incompatible ones.

To define a new schema, you should write a human-readable schema specification document
The specification document should be made available to any developers who need to write
code that understands your metadata.

NOTE: Future versions of XMP might include support for machine-readable schema
specifications, but such support will always be in addition to the requirement for
human-readable schema specification documents.

Your specification document should include:

● A unique name for your schema in the form of a URI and a preferred prefix.

● A table containing the name of each property, the value type, and the description of the
property.

If you define properties that have structured value types, you may wish to use additional URI
names to identify the components of a structured property value.

You can then add more properties as needed, following the RDF and XMP syntax
requirements described in this document to create compatible RDF metadata.

88 June 2005 XMP Specification

XMP Schemas
Extensibility of Schemas

4

Extending Schemas

Keep in mind the following points when extending a schema:

● New properties may be added to existing namespaces without “breaking” applications.

● The definitions of properties in existing namespaces should always remain the same;
otherwise, applications may produce incorrect behavior. If it is necessary to change the
meaning of a property, a new property should be created (and the old one declared as
deprecated).

● It is possible to create a “new version” of a schema namespace. However, there is no
logical connection between the old version and the new version. The same name in two
namespaces refers to two different properties.

XMP Specification June 2005 89

XMP Schemas
Extensibility of Schemas

4

90 June 2005 XMP Specification

XMP Schemas
Extensibility of Schemas

4

XMP Specification June 2005 91

5 Embedding XMP Metadata in
Application Files

This chapter describes how XMP metadata in XMP Packets is embedded in a variety of file
formats. Document interchange is best achieved by applications that understand how XMP is
embedded.

These descriptions assume that the reader has a working knowledge of the referenced file
formats.

● TIFF

● JPEG

● JPEG 2000

● GIF

● PNG

● HTML

● PDF

● AI (Adobe Illustrator)

● SVG/XML

● PSD (Adobe Photoshop)

● PostScript and EPS

● DNG

92 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
TIFF

5

TIFF

In TIFF files, an entry in the Image File Directory (IFD) points to the XMP Packet. The XMP
must be encoded as UTF-8. The IFD entry has a Tag value of 700 (decimal), as shown here:

Reference

TIFF 6.0 Specification:

http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf

Byte
offset

Field
value

Field
name Comments

0, 1 700 TAG Tag that identifies the field (decimal value).

2, 3 1 Field type The field type is BYTE, which is represented as a value of 1.

4–7 Count The total byte count of the XMP Packet.

8–11 Value or
Offset

The byte offset of the XMP Packet.

http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf

XMP Specification June 2005 93

Embedding XMP Metadata in Application Files
JPEG

5

JPEG

In JPEG files, an APP1 marker designates the location of the XMP Packet. The following table
shows the entry format.

The header plus the following data must be less than 64 KB bytes. The XMP Packet cannot be
split across the multiple markers, so the size of the XMP Packet must be at most 65502 bytes.

References

● JPEG File Interchange Format Version 1.02

● ISO/IEC 10918-1 Information technology - Digital Compression and Coding of
continuous-tone still images: requirements and guidelines.

● ISO/IEC 10918-4 Information technology — Digital compression and coding of
continuous-tone still images: Registration of JPEG profiles, SPIFF profiles, SPIFF tags,
SPIFF color spaces, APPn markers, SPIFF compression types and Registration Authorities
(REGAUT)

This specifies the format of APPn markers and the file interchange format.

Byte
Offset Field value Field name

Length
(bytes) Comments

0 0xFFE1 APP1 2 APP1 marker.

2 2 + length of
namespace (29) +
length of XMP
Packet

Lp 2 Size in bytes of this count plus the
following two portions.

4 Null-terminated
ASCII string
without quotation
marks.

namespace 29 XMP namespace URI, used as unique ID:
http://ns.adobe.com/xap/1.0/

33 < XMP Packet > Must be encoded as UTF-8.

94 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
JPEG 2000

5

JPEG 2000

The JP2 format consists of a set of “boxes”. XMP packets are stored in a UUID box, as shown
in the following table:

References

Information about the JPEG 2000 standard can be found at
http://www.jpeg.org/JPEG2000.html.

Field value Field name
Length
(bytes) Comments

Entire length in bytes (including
the four used for this field)

Length 4 Big-endian unsigned integer

0x75756964 (‘uuid’) Type 4 Big-endian unsigned integer

BE 7A CF CB
97 A9 42 E8
9C 71 99 94
91 E3 AF AC

UUID 16 16-byte binary UUID as defined by
ISO/IEC 11578:1996

< XMP Packet > DATA Must be encoded as UTF-8

http://www.jpeg.org/JPEG2000.html

XMP Specification June 2005 95

Embedding XMP Metadata in Application Files
GIF

5

GIF

In a GIF89a file, an XMP Packet is in an Application Extension (see the following figure). Its
Application Identifier is 'XMP Data' and the Application Authenticator is 'XMP'. The
Application Data consists of the XMP Packet, which must be encoded as UTF-8, followed by
a 258-byte “magic” trailer, whose values are 0x01, 0xFF, 0xFE, 0xFD0x03, 0x02, 0x01,
0x00, 0x00. The final byte is the Block Terminator.

XMP in GIF File Format:

The XMP must be UTF-8-encoded, for the following reasons. GIF actually treats the
Application Data as a series of GIF data sub-blocks. The first byte of each sub-block is the
length of the sub-block’s content, not counting the first byte itself. To consume the

0 0x21

1 0xFF

0x0B

2

3

0

1

6

7

4

5

10

11

8

9

‘X’

‘M’

‘P’

‘ ’

‘D’

‘a’

‘t’

‘a’

‘X’

‘P’

‘M’

0x58

0x4D

0x50

0x20

0x44

0x61

0x74

0x61

0x58

0x50

0x4D

0x00

7 6 5 4 3 2 1 0 Field Name Type
Extension Introducer Byte

Extension Label Byte

Block Size Byte

Application Identifier 8 Bytes

Application Authentication 3 Bytes

XMP Packet, Byte

Code

must be encoded as UTF-8

0x01

0xFF

0xFE

 0x00

0x01

...

“Magic trailer”

Block Terminator Byte

<XMP Packet>

258 Bytes

96 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
GIF

5

Application Data, a length byte is read. If it is non-zero, that many bytes of data are read,
followed by the next length byte. The series ends when a zero length byte is encountered.

When XMP is encoded as UTF-8, there are no zero bytes in the XMP Packet. Therefore,
software that is unaware of XMP views packet data bytes as sub-block lengths, and follows
them through the packet accordingly, eventually arriving somewhere in the magic trailer. The
trailer is arranged so whichever byte is encountered there will cause a skip to the Block
Terminator at the end.

Reference

The GIF 89a specification is available at http://members.aol.com/royalef/gif89a.txt

http://members.aol.com/royalef/gif89a.txt

XMP Specification June 2005 97

Embedding XMP Metadata in Application Files
PNG

5

PNG

An XMP Packet is embedded in a PNG graphic file by adding a chunk of type iTXt. This
chunk is semantically equivalent to the tEXt and zTXt chunks, but the textual data is in the
UTF-8 encoding of the Unicode character set, instead of Latin-1.

The Chunk Data portion is the XMP Packet. The packet must be marked as read-only.

NOTE: XMP software that is not aware of the file format must not be allowed to change the
content of the XMP Packet because of the CRC checksum following the chunk data.

There should be no more than one chunk containing XMP in each PNG file. Encoders are
encouraged to place the chunk at the beginning of the file, but this is not required.

PNG Data Format

Reference

http://www.w3.org/TR/REC-png.html

Field Length Comments

Length 4 An unsigned integer representing the number of bytes in the
chunk’s data field (does not include the chunk type code or
the CRC).

Chunk Type 4 "iTXt"

Chunk Data: Standard iTXt chunk header plus the XMP Packet

Keyword 17 "XML:com.adobe.xmp"

Null separator 1 value = 0x00

Compression flag 1 value = 0x00, specifies uncompressed data.

Compression method 1 value = 0x00

Language tag 0 Not used for XMP metadata.

Null separator 1 value = 0x00

Translated keyword 0 Not used for XMP metadata.

Null separator 1 value = 0x00

Text length of
packet

<XMP Packet>, must be encoded as UTF-8

CRC 4 The Cyclic Redundancy Check, calculated on the preceding
bytes in the chunk, including the chunk type code and
chunk data fields, but not including the length field.

http://www.w3.org/TR/REC-png.html

98 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
HTML

5

HTML

XMP embedded in HTML should conform to one of the W3C recommendations for
embedding XML in HTML; see Reference below.

XML can be embedded in a SCRIPT or XML element, placed in any legal location; the
suggested location is the end of the HEAD element. The content of the SCRIPT or XML element
is the XMP Packet.

The browser must recognize the SCRIPT or XML element so that text representing the value of
RDF properties is not displayed as page content. Using the XML element is preferred unless
there are known incompatibilities with older software; if so, the SCRIPT element is likely to
be recognized.

There are three approaches to embedding XML in HTML, as shown in the examples below.
Two use the SCRIPT element, and the third uses the XML element.

Using the SCRIPT element and LANGUAGE attribute
<html>
<head>
<SCRIPT LANGUAGE="XML">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>
</head>
<body>
</body>
</html>

NOTE: Adobe has noticed problems with using the SCRIPT element and LANGUAGE attribute
in Microsoft Word 2000 running under Microsoft Windows XP: the body content
cannot be displayed.

Using the SCRIPT element and TYPE attribute
<html>
<head>
<SCRIPT TYPE="text/xml">
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</SCRIPT>
</head>
<body>
</body>
</html>

XMP Specification June 2005 99

Embedding XMP Metadata in Application Files
HTML

5

Using the XML element
<html>
<head>
<XML>
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It is removed for brevity. -->
<?xpacket end='w'?>
</XML>
</head>
<body>
</body>
</html>

Reference

The meeting report for the May 1998 W3C meeting: http://www.w3.org/TR/NOTE-xh.

http://www.w3.org/TR/NOTE-xh

100 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PDF

5

PDF

For PDF files, the XMP Packet is embedded in a metadata stream contained in a PDF object
(beginning with PDF 1.4). The XMP must be encoded as UTF-8.

This is a partial example of XMP metadata embedded as an XMP Packet, stored as a metadata
stream:

1152 0 obj
<< /Type /Metadata /Subtype /XML /Length 1706 >>
stream
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<!-- The serialized RDF goes here. It has been removed for brevity. -->
<?xpacket end='w'?>
endstream
endobj

PDF files that have been incrementally saved can have multiple packets that all look like the
“main” XMP metadata. During an incremental save, new data (including XMP Packets) is
written to the end of the file without removing the old. Top-level PDF dictionaries are also
rewritten, so an application that understands PDF can check the dictionary to find only the new
packet.

Reference

Full documentation on metadata streams in PDF files is available in the PDF Reference,
Version 1.5, at http://partners.adobe.com/asn/tech/pdf/specifications.jsp

AI (Adobe Illustrator)

An .ai file generated by Adobe Illustrator® is in the Portable Document Format (PDF).
Hence, the format for embedding XMP metadata is the same as for PDF files.

http://partners.adobe.com/asn/tech/pdf/specifications.jsp

XMP Specification June 2005 101

Embedding XMP Metadata in Application Files
SVG/XML

5

SVG/XML

XMP metadata, because it is legal XML, can be directly embedded within an XML document.
An XMP Packet is not intended to be a complete standalone XML document; therefore it
contains no XML declaration. The XMP Packet can be placed anywhere within the XML
document that an element or processing instruction would be legal.

It is recommended that the file be encoded as Unicode using UTF-8 or UTF-16. This provides
compatibility for software that scans for XMP Packets and parses just their content.

Reference

The XML specification is available at http://www.w3.org/TR/REC-xml

http://www.w3.org/TR/REC-xml

102 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PSD (Adobe Photoshop)

5

PSD (Adobe Photoshop)

Adobe Photoshop® .psd files contain image resource blocks, which are used to store non-
pixel data associated with an image. The following table shows the format of an image
resource block:

For the Name and Data fields in the above table, “padded to make size even” means that an
extra zero byte is appended to the “raw” field value, if necessary.

Field Type Description

Type OSType Photoshop always uses its signature, 8BIM.

ID 2 bytes ID = 1060 for XMP metadata.

Name PString A Pascal string, padded to make size even (that is, an extra zero byte is
appended if needed).

A null name consists of two bytes of 0.

For Photoshop 7, XMP metadata uses a Name value of "XMP".

Size 4 bytes Actual size of resource data. This does not include the

Type, ID, Name, or Size fields.

Data Variable Resource data, padded to make size even. This is the XMP Packet, which
must be encoded as UTF-8.

XMP Specification June 2005 103

Embedding XMP Metadata in Application Files
PostScript and EPS

5

PostScript and EPS

XMP metadata can be placed in PostScript® or EPS files, for use in either PostScript or PDF
workflows. This section describes how to place XMP into PostScript or EPS for both the outer
document level (main XMP) and for internal objects such as an image (object XMP). It also
specifically discusses issues involving Acrobat Distiller, since workflows often use Distiller to
produce PDF from PostScript and EPS.

NOTE: This does not imply that use of Distiller is necessary, or that other application issues do
not exist.

There are three important “flavors” of PostScript files that can affect how XMP is written,
found, and used. They are:

● DSC PostScript (or just “PostScript”): PostScript conforming to the DSC conventions
defined in Appendix G of the PostScript Language Reference.

● Raw PostScript: PostScript following no particular structural conventions. The use of raw
PostScript is discouraged. As mentioned in “Ordering of Content” on page 104, a special
DSC comment is required to support fast and reliable location of the main XMP.

● EPS: PostScript conforming to the EPS conventions defined in Appendix H of the
PostScript Language Reference. EPS is a subset of DSC PostScript.

Because of common usage issues, document-level XMP should be written differently for
PostScript and EPS. Object-level XMP is written identically for PostScript and EPS.

The XMP in a PostScript/EPS file must be encoded as UTF-8.

Document-Level Metadata

As with any file format, locating contained XMP in PostScript or EPS is most reliably done by
fully processing the file format. For PostScript, this means executing the PostScript
interpreter. Packet scanning is not reliable whenever a file contains multiple XMP packets, or
object XMP without main XMP.

It is often worthwhile to find the main XMP and ignore (at least temporarily) object XMP.
Interpretation of the entire PostScript file to locate the main XMP can be very expensive. A
hint and careful ordering are used to allow a combination of XMP packet scanning and
PostScript comment scanning to reliably find the main XMP.

To write document-level metadata in PostScript, an application must:

● Write the %ADO_ContainsXMP comment as described under “Ordering of Content” on
page 104.

● Write the XMP packet as described under “Document-Level XMP in PostScript” on
page 105.

To write document-level metadata in EPS an application must:

104 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PostScript and EPS

5

● Write the %ADO_ContainsXMP comment as described under “Ordering of Content” on
page 104.

● Write the XMP packet as described under “Document-Level XMP in EPS” on page 106.

Use of raw PostScript is discouraged specifically because it lacks the %ADO_ContainsXMP
comment. If raw PostScript must be used, the XMP must be embedded as described under
“Document-Level XMP in PostScript” on page 105.

Ordering of Content

Many large publications use PostScript extensively. It is common to have very large layouts
with hundreds or thousands of placed EPS files. Because PostScript is text, locating XMP
embedded within PostScript in general requires parsing the entire PostScript program, or at
least scanning all of its text. Placed PostScript files can be quite large. They can even represent
compound documents, and might contain multiple XMP packets. For PostScript files
containing XMP at all, the entire file would have to be searched to make that simple
determination.

All of this presents performance challenges for layout programs that want to process XMP
embedded in PostScript. As a pragmatic partial solution, a special marker comment can be
placed in the PostScript header comments to provide advice about locating the main XMP.
This marker must be before the %%EndComments line.

The purpose of this marker is to tell applications consuming the PostScript whether a main
XMP is present at all, and how to look for the main XMP. The form of the XMP marker is:

%ADO_ContainsXMP: <option> ...

The marker must be at the beginning of a line. An option is a contiguous sequence of
characters that does not include spaces, tabs, linefeeds, or carriage returns; options are case
sensitive. There must be no whitespace before the colon. Applications should ignore options
they do not understand.

There are three options defined at present. They are mutually exclusive and provide a hint
about how to find the main XMP. Note that the main XMP is not necessarily the document-
level XMP:

● MainFirst: the main XMP is the first XMP packet in the file and is located near the front
of the file. The XMP should be in front of as much PostScript content as possible.

● MainLast: the main XMP is the last XMP packet in the file and is located near the back of
the file. The XMP should be behind as much PostScript content as possible.

● NoMain: there is no main XMP packet for the PostScript file. The file might still contain
XMP packets, for example within embedded EPS sections or attached to internal objects.

NOTE: The XMP location option applies to both the location of the main XMP in the file and
to its position relative to other object-level XMP. The main XMP packet must be
before all other XMP if MainFirst is used; it must be after all other XMP if
MainLast is used. It is not necessary for the other XMP packets to be adjacent to the
main packet.

XMP Specification June 2005 105

Embedding XMP Metadata in Application Files
PostScript and EPS

5

NOTE: When EPS files are concatenated, it is necessary to provide a new set of PostScript
header comments for the aggregate, and optionally new a main XMP packet.
Otherwise the XMP marker comment from the first EPS portion would erroneously be
taken to refer to the aggregate.

Document-Level XMP in PostScript

This section assumes that PostScript devices are level 2 or newer, and that Distiller version 6.0
or newer is used. Compatibility issues are discussed in “Compatibility With Distiller 5 for
PostScript” on page 108 and “LanguageLevel 1 for PostScript and EPS” on page 108.

There are three main steps to setting up the document-level XMP:

1. Creating a PostScript stream object to contain the XMP.

2. Placing the XMP into the stream object.

3. Associating the XMP stream object with the document.

XMP metadata must be embedded in a PostScript file in a way that it will be recognized by
software that scans files for metadata, which means embedding the complete XMP packet.
However, if that file were sent to a PostScript output device, the packet data would cause
PostScript errors and the job would fail. To be able to handle arbitrary data, we need a
procedure to read the XMP data from the current file, and discard the data if it is not intended
to be interpreted.

NOTE: In what follows, we define some procedures in a private dictionary like:

privatedict /metafile_pdfmark {flushfile cleartomark} bind put

The name privatedict is for illustration purpose only. In the real product code, these
procedures should be defined in a unique dictionary so that several EPS files can be
used in one document and slightly different versions of these procedures can co-exist.

Here is an example that shows how to embed document-level XMP in PostScript. This
example does not include the required marker comment.

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.

% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts. This is discussed later in the section
% “Avoiding Name Conflicts” on page 107.

/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse

{privatedict /pdfmark /cleartomark load put

106 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PostScript and EPS

5

privatedict /metafile_pdfmark {flushfile cleartomark} bind put}
{privatedict /metafile_pdfmark {/PUT pdfmark} bind put} ifelse

% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.

% Create a pdfmark named stream object to hold the data. As with the
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.
%
% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.
%
% The “&&end XMP packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.

% First: Create the XMP metadata stream object and say that it is XMP.
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark

% Second: Fill the stream with the XMP packet.
[{my_metadata_stream_123}
 currentfile 0 (% &&end XMP packet marker&&)
 /SubFileDecode filter metafile_pdfmark

... XMP packet goes here ...

% &&end XMP packet marker&&

% Third: Attach the stream as the main XMP metadata stream.
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

Document-Level XMP in EPS

Embedding XMP inside EPS is very similar to PostScript; however, there are issues raised by
the common practice of embedding EPS within other EPS or PostScript. The notion of
document-level XMP in EPS really means outermost XMP in the EPS. This will be document-
level XMP in the PDF if the EPS is distilled alone. This will be appropriate marked content if
the EPS is embedded in other EPS or PostScript.

The solution for EPS requires:

● The XMP must be placed before all EPS content (PostScript drawing commands).

● The /BDC and /EMC pdfmarks must be used to bracket the EPS content.

● The third XMP setup step uses different PostScript code.

XMP Specification June 2005 107

Embedding XMP Metadata in Application Files
PostScript and EPS

5

Here is an abbreviated example, modified from the previous example:

%%EndPageSetup
[/NamespacePush pdfmark

... Do all of the XMP setup as above, up to step 3 ...

% Third: Attach the stream to the Marked Content dictionary.
% All drawing commands must be between the /BDC and /EMC operators.
[/Document 1 dict begin

/Metadata {my_metadata_stream_123} def currentdict end /BDC pdfmark
[/NamespacePop pdfmark

... All drawing commands go here ...

%%PageTrailer
[/EMC pdfmark

Avoiding Name Conflicts

In the samples, we used the name {my_metadata_stream_123} and suggested that some
form of unique name be used. The recommended approach is to generate a typical UUID and
strip out all but the significant alphanumeric characters. Use this as a suffix to the name.

An alternate solution is to use NamespacePush and NamespacePop pdfmarks. This is also
the recommended solution in the Pdfmark Reference Manual (it is accessible from Distiller’s
Help menu.) This is preferable if possible, but might require large and untenable separation of
the push an pop.

It is important to put all pdfmarks using the named objects in the same block bracketed by
NamespacePush and NamespacePop pair; for example, the following PostScript code is
bad:

[/NamespacePush pdfmark
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark
[{my_metadata_stream_123}

currentfile 0 (% &&end XML Packet marker&&)
/SubFileDecode filter metafile_pdfmark
... XML Packet goes here ...
% &&end XML Packet marker&&
[/NamespacePop pdfmark
% At this point, the name {my_metadata_stream_123} is no longer usable.
% next line will cause “undefined” error:
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

108 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PostScript and EPS

5

Compatibility With Distiller 5 for PostScript

Acrobat Distiller version 5 was the first to include XMP support, but it does not support the
/Metadata pdfmark. There is no easy way to attach document-level XMP with Distiller 5. It
will ignore the /Metadata pdfmark, without signaling a PostScript error.

LanguageLevel 1 for PostScript and EPS

The SubFileDecode filter became available in PostScript LanguageLevel 2. If the PostScript
or EPS containing XMP must be processed by PostScript LanguageLevel 1 devices, such as
older printers, another approach must be used to read the XMP into the stream object.

With PostScript LanguageLevel 1, there are at least two approaches: using readstring to
read in the whole XMP packet, or readline to read in the XMP packet data line by line until
an end marker is found.

We present the readline approach here. The readline approach solves two problems that
exist for readstring:

● We don’t have to know the exact size of the whole packet, just need to know the maximum
length of the lines.

● The exact length of an XMP packet may change if the PostScript/EPS file is re-saved by a
text editor with different line ending convention, CR, LF, or CRLF.

Here is an example showing how to use the readline approach for PostScript. It is very
similar overall to the earlier example, differing only in step 2 and related prolog:

% ==
% We start with some Postscript prolog. This defines operators and
% procedures that we will use when processing the XMP metadata.

% Define pdfmark to cleartomark, so the data is discarded when consumed
% by a PostScript printer or by Distiller 4.0 or earlier. All following
% references to “privatedict” should be changed to a unique name to
% avoid potential conflicts. This is discussed later in the section
% “Avoiding Name Conflicts”.

/currentdistillerparams where
{pop currentdistillerparams /CoreDistVersion get 5000 lt} {true} ifelse
{privatedict /pdfmark /cleartomark load put} if

% Define another procedure to read line by line from current file until
% marker line is found. The maximum line length is used to create a
% temporary buffer for reading the XMP lines.
% On stack: [{name} maxLineLength MarkerString

privatedict /metastring_pdfmark
{ 2 dict begin
/markerString exch def string /tmpString exch def
{ currentfile tmpString readline pop

XMP Specification June 2005 109

Embedding XMP Metadata in Application Files
PostScript and EPS

5

markerString anchorsearch
{pop pop cleartomark exit}
{3 copy /PUT pdfmark pop 2 copy (\n) /PUT pdfmark} ifelse
} loop
end
}bind put

% ==
% We now create the stream containing the XMP metadata. This must follow
% the prolog shown above, but does not need to be adjacent to it.

% Create a pdfmark named stream object in PDF to hold the data. As with
% privatedict above, use of a unique name is recommended, not literally
% my_metadata_stream_123. The name of this stream is local to the
% Postscript program, it has no outside significance.
%
% First define the stream object, then read the XMP packet into the
% stream, finally attach the stream as the main XMP.

% The <LineLength> below must be replaced with a value larger than the
% longest line in the XMP packet. There is no safe and general way to
% exactly determine this, the XMP can be modified in place after the
% Postscript is written and could legally all be on one line.
%
% The overall length of the packet cannot change though. You should set
% the <LineLength> to the lesser of the packet size and 65500. The upper
% limit keeps this within the 64KB limit of PostScript strings.
%
% The “&&end XML Packet marker&&” comment is significant, it terminates
% the reading of the XMP packet.

% First: Create the XMP metadata stream object and say that it is XMP.
[/_objdef {my_metadata_stream_123} /type /stream /OBJ pdfmark
[{my_metadata_stream_123} 2 dict begin

/Type /Metadata def /Subtype /XML def currentdict end /PUT pdfmark

% Second: Read the XMP packet into the stream.
[{my_metadata_stream_123} <LineLength>

(% &&end XMP Packet marker&&) metastring_pdfmark

... XMP packet goes here ...

% &&end XMP Packet marker&&

% Third: Attach the stream as the main XMP metadata stream.
[{Catalog} {my_metadata_stream_123} /Metadata pdfmark

110 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
PostScript and EPS

5

Traditional PDF Metadata and XMP

The discussion here is primarily about explicitly embedding XMP in PostScript and EPS to
provide metadata. However, when Distiller is used the document-level metadata in the PDf
file can contain information that comes from other sources than the XMP embedded in the
PostScript. This is metadata that traditionally went into the PDF document information
dictionary, and with the advent of XMP is replicated in the PDF’s document-level XMP.

There are two other methods for putting metadata in a PostScript file so Distiller will put it in
the PDF document info dictionary and also create and embed an XMP packet for that data in
the PDF document. You can use:

● DSC (Document Structuring Conventions) comments. The DSC comments are processed
only if DSC parsing is enabled, that is, only if the job file contains the following line:

/ParseDSCCommentsForDocInfo true

● DOCINFO pdfmark command. Information on pdfmark is available from the Distiller
application Help menu, under “pdfmark Guide.”

If more than one of the three possible sources of metadata for the PDF file are present, then a
property value in the document-level XMP is taken from the first of these sources in the
PostScript used to create the PDF that contains the property:

● Explicit document-level XMP.

● Explicit document info dictionary.

● DSC comments.

Because the pdfmark command is more reliable than DSC comments, many applications use
it to set DocInfo properties for a PDF document. The following is an example of PostScript
code, created by FrameMaker, which illustrates the use of the DOCINFO pdfmark operator:

/Creator (FrameMaker 6.0)
/CreationDate (D:20020214144924)
/ModDate (D:20020215142701)
/Author(John Doe)
/Title (Processing XMP Data in EPS Files)
/Subject (XMP)
/Keywords (XMP, pdfmark)
/DOCINFO pdfmark

Distiller will place these seven properties – plus “Producer” – into the resulting PDF file in
two places: the document information dictionary and document-level Metadata as an XML
Packet. The Producer is the product name, e.g. “Acrobat Distiller 5.0 (Windows).” It is
possible to add other Key/Value pairs to PDF DocInfo, but they are not added to the
document-level Metadata in Distiller 5.0.

Care must be taken if the file might be sent to a PostScript interpreter instead of to Distiller.
Some PostScript interpreters may not recognize the pdfmark command, e.g. those in older
printers. One way to avoid problems is to conditionally define the pdfmark operator to the
“cleartomark” operator. This is shown in the earlier examples.

XMP Specification June 2005 111

Embedding XMP Metadata in Application Files
PostScript and EPS

5

Object-Level Metadata

Object-level XMP is written identically for PostScript and EPS.

Metadata streams can be attached to specific objects in a PostScript file using the pdfmark
operator. This is identical to the document-level PostScript method (see “Document-Level
XMP in PostScript” on page 105), except that in step 3 the stream containing the XMP
metadata is attached to the object. An example follows showing this for an image:

% ==
% We assume that the XMP stream has been defined as shown earlier. All
% but the third step, defining the stream as a metadata stream. We also
% assume that the image has been defined as {myImage_123}. Again, a
% unique name should be used.
%
% The third step is replaced with one that associates the XMP metadata
% with the image. Since this must be located after both the image and
% XMP streams, it might not be adjacent to the other XMP parts. See the
% ordering issues discussed in “Ordering of Content”.

% Third: Attach the XMP metadata stream to the image.
[{myImage_123} <</Metadata {my_metadata_stream_123}>> /PUT pdfmark

NOTE: The approach shown here is compatible with all PostScript devices. That is, no
additional changes are needed to ensure that level 1 devices will properly ignore the
XMP beyond those already mentioned, and Distiller 5 and later will attach the XMP to
the associated object in the PDF file.

NOTE: Although Distiller 5 will attach the XMP to the associated object in the PDF file, the
XMP stream in the PDF will be Flate-compressed. This makes the object XMP packet
in the PDF invisible to external packet scanners. The XMP will be visible to software
processing the PDF format and decompressing the stream. Distiller 6 and later do not
compress the XMP packet stream.

112 June 2005 XMP Specification

Embedding XMP Metadata in Application Files
DNG

5

DNG

DNG is a public archival format for digital camera raw data. DNG files can embed XMP
metadata. For information on this file format and how to embed XMP metadata in it, see:

http://www.adobe.com/products/dng/main.html

"http://www.adobe.com/products/dng/main.html"

	XMP Specification
	Table of Contents
	Preface
	About This Document
	Audience
	How This Document Is Organized
	Conventions used in this Document

	Where to Go for More Information
	Changes in This Document

	Introduction
	What is Metadata?
	What is XMP?
	What XMP Does Not Cover

	XMP Data Model
	Metadata Properties
	Schemas and Namespaces
	Property Values
	Simple Types
	Structures
	Arrays
	Unordered Arrays
	Ordered Arrays
	Alternative Arrays

	Property Qualifiers
	Language Alternatives

	XMP Storage Model
	Serializing XMP
	x:xmpmeta element
	rdf:RDF element
	rdf:Description elements
	The rdf:about attribute
	Instance IDs

	XMP Properties
	Simple Types
	Structures
	Arrays
	Property Qualifers
	Language Alternatives

	RDF Issues
	Unsupported Features
	Validation
	rdf:about Property

	XMP Packets
	Header
	Attribute: begin
	Attribute: id
	Attribute: bytes
	Attribute: encoding

	XMP Data
	Padding
	Trailer
	Attribute: end

	Scanning Files for XMP Packets
	Caveats
	Scanning Hints

	External Storage of Metadata

	XMP Schemas
	XMP Schema Definitions
	Dublin Core Schema
	XMP Basic Schema
	XMP Rights Management Schema
	XMP Media Management Schema
	XMP Basic Job Ticket Schema
	XMP Paged-Text Schema
	XMP Dynamic Media Schema
	Adobe PDF Schema
	Photoshop Schema
	Camera Raw Schema
	EXIF Schemas
	EXIF Schema for TIFF Properties
	EXIF Schema for EXIF-specific Properties
	EXIF Schema for Additional EXIF Properties
	Data Representation and Conversion
	EXIF Text
	EXIF Dates
	Example

	Property Value Types
	Basic Value Types
	Boolean
	Choice
	Colorant
	Date
	Dimensions
	Font
	Integer
	Lang Alt
	Locale
	MIMEType
	ProperName
	Real
	Text
	Thumbnail
	URI
	URL
	XPath

	Media Management Value Types
	AgentName
	RenditionClass
	ResourceEvent
	ResourceRef
	Version

	Basic Job/Workflow Value Types
	Job

	Video Media Value Types
	beatSpliceStretch
	Marker
	Media
	ProjectLink
	resampleStretch
	Time
	Timecode
	timeScaleStretch

	EXIF Schema Value Types
	Rational
	GPSCoordinate
	Flash
	OECF/SFR
	CFAPattern
	DeviceSettings

	Extensibility of Schemas
	Creating Custom Schemas
	Extending Schemas

	Embedding XMP Metadata in Application Files
	TIFF
	Reference

	JPEG
	References

	JPEG 2000
	References

	GIF
	XMP in GIF File Format:
	Reference

	PNG
	PNG Data Format
	Reference

	HTML
	Using the SCRIPT element and LANGUAGE attribute
	Using the SCRIPT element and TYPE attribute
	Using the XML element
	Reference

	PDF
	Reference

	AI (Adobe Illustrator)
	SVG/XML
	Reference

	PSD (Adobe Photoshop)
	PostScript and EPS
	Document-Level Metadata
	Ordering of Content
	Document-Level XMP in PostScript
	Document-Level XMP in EPS
	Avoiding Name Conflicts
	Compatibility With Distiller 5 for PostScript
	LanguageLevel 1 for PostScript and EPS
	Traditional PDF Metadata and XMP

	Object-Level Metadata

	DNG

