Sample of MathML 1

Japanese High School Text "Mathematics B"

N-th power root

In general, a non-zero complex number, $a=r(\cos \theta+i \sin \theta)$, has the following n complex numbers as n-th power roots.
$z_{n}=\sqrt[n]{r}\left\{\cos \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} \times k\right)+i \sin \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} \times k\right)\right\}(k=0,1,2, \cdots, n-1)$,
where $\sqrt[n]{r}$ is a positive n-th power root of a positive number r .

An angle made by two vectors

Suppose two vectors $\vec{a}=\left(a_{1}, a_{2}\right)$ and $\vec{b}=\left(b_{1}, b_{2}\right)$ are non-zero vectors, θ is the angle made by these two vectors, and $0^{\circ} \leqq \theta \leqq 180^{\circ}$. Since $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$,
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}} \sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}}}$

A point that divides a segment into $m: n$

Suppose two points, $\mathrm{A}(\vec{a})$ and $\mathrm{B}(\vec{b})$, are not identical, $m+n \neq 0$, and a point, $\mathrm{P}(\vec{p})$, divides a segment AB into $m: n$. Then,
$\vec{p}=\frac{n \vec{a}+m \vec{b}}{n+m}$
Particularly, when the midpoint of a segment AB is $\mathrm{M}(\vec{m})$,
$\vec{m}=\frac{\vec{a}+\vec{b}}{2}$

Probability distribution

Suppose a random variable X can take the following n values $x_{1}, x_{2}, \ldots \ldots$, x_{n}, and the probability of an event $X=x_{i}$ is p_{i}. Then,

Mean

$$
m=E(X)=\sum_{i=1}^{n} x_{i} p_{i}
$$

Variance

$$
V(X)=E\left((X-m)^{2}\right)=\sum_{i=1}^{n}\left(x_{i}-m\right)^{2} p_{i}
$$

$$
V(X)=E\left(X^{2}\right)-m^{2}=\sum_{i=1}^{n} x_{i}^{2} p_{i}-m^{2}
$$

Standard deviation $\sigma(X)=\sqrt{V(X)}$

Matrix Presentation

$$
A=\begin{gathered}
m \\
r\left(\begin{array}{cc}
\\
r A_{11}: & n \\
\cdots\left[\begin{array}{c}
A_{12} \\
\cdots \\
A_{21}
\end{array}:\right. & \cdots \\
A_{22}
\end{array}\right)
\end{gathered}
$$

