

Sample of MathML 1

Japanese High School Text "Mathematics B"

N-th power root

In general, a non-zero complex number, $a = r(\cos \theta + i \sin \theta)$, has the following n complex numbers as n-th power roots.

$$z_n = \sqrt[n]{r} \left\{ \cos \left(\frac{\theta}{n} + \frac{360^{\circ}}{n} \times k \right) + i \sin \left(\frac{\theta}{n} + \frac{360^{\circ}}{n} \times k \right) \right\} (k = 0, 1, 2, \dots, n - 1),$$

where $\sqrt[n]{r}$ is a positive *n*-th power root of a positive number r.

An angle made by two vectors

Suppose two vectors $\vec{a} = (a_1, a_2)$ and $\vec{b} = (b_1, b_2)$ are non-zero vectors, θ is the angle made by these two vectors, and $0^{\circ} \leq \theta \leq 180^{\circ}$. Since $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos \theta$,

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}}$$

A point that divides a segment into m:n

Suppose two points, $A(\vec{a})$ and $B(\vec{b})$, are not identical, $m + n \neq 0$, and a point, $P(\vec{p})$, divides a segment AB into m:n. Then,

$$\vec{p} = \frac{n\vec{a} + m\vec{b}}{n + m}$$

Particularly, when the midpoint of a segment AB is $M(\vec{m})$,

$$\vec{m} = \frac{\vec{a} + \vec{b}}{2}$$

Probability distribution

Suppose a random variable X can take the following n values x_1, x_2, \dots , x_n , and the probability of an event $X = x_i$ is p_i . Then,

$$m = E(X) = \sum_{i=1}^{n} x_i p_i$$

Variance

$$V(X) = E((X - m)^{2}) = \sum_{i=1}^{n} (x_{i} - m)^{2} p_{i}$$

$$V(X) = E(X^{2}) - m^{2} = \sum_{i=1}^{n} x_{i}^{2} p_{i} - m^{2}$$

Standard deviation $\sigma(X) = \sqrt{V(X)}$

Matrix Presentation

$$A = r \begin{bmatrix} M & n \\ \hline ----- & --- \\ r \begin{bmatrix} A_{11} & A_{12} \\ \cdots & \cdots \\ A_{21} & A_{22} \end{bmatrix}$$